首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low-temperature EPR spectra of chromaffin granule membranes from bovine adrenal medulla reveal 3 different signals of the ferric cytochrome b-561. A typical gZ signal of a low-spin cytochrome observed at g approximately 3 is comprised of a high-potential component with gZ = 3.14 and a low-potential one with gZ = 3.11, the low-potential signal showing significantly faster relaxation. In addition, a highly temperature-sensitive heme signal at g = 3.7 is observed which is fully retained in the preparation of granule membranes with b-561 reduced by 50% but disappears upon full reduction of the cytochrome by ascorbate. The signal is strikingly similar to that of the mitochondrial low-potential cytochrome b heme (bL or b-566). The presence of several forms of b-561 in chromaffin granule membranes may provide a structural basis for the transmembrane electron transfer believe to be catalyzed by this hemoprotein.  相似文献   

2.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two hemes b with EPR signals at g(z) = 3.69 and 3.14 and participates in transmembrane electron transport from extravesicular ascorbate to an intravesicular monooxygenase, dopamine beta-hydroxylase. Treatment of purified cytochrome b(561) in an oxidized state with a sulfhydryl reagent, 4,4'-dithiodipyridine, caused the introduction of only one 4-thiopyridine group per b(561) molecule at either Cys57 or Cys125. About half of the heme centers of the modified cytochrome were reduced rapidly with ascorbate as found for the untreated sample, but the final reduction level decreased to approximately 65%. EPR spectra of the modified cytochrome showed that a part of the g(z) = 3.14 low-spin EPR species was converted to a new low-spin species with g(z) = 2.94, although a considerable part of the heme center was concomitantly converted to a high-spin g = 6 species. Addition of ascorbate to the modified cytochrome caused the disappearance or significant reduction of the EPR signals at g(z) = 3.69 and 3.14 of low-spin species and at g = 6.0 of the high-spin species, but not for the g(z) approximately 2.94 species. These results suggested that the bound 4-thiopyridone at either Cys57 or Cys125 affected the intravesicular heme center and converted it partially to a non-ascorbate-reducible form. The present observations suggested the importance of the two well-conserved Cys residues near the intravesicular heme center and implied their physiological roles during the electron donation to the monodehydroascorbate radical.  相似文献   

3.
Kamensky Y  Liu W  Tsai AL  Kulmacz RJ  Palmer G 《Biochemistry》2007,46(29):8647-8658
Cytochrome (cyt) b561 transports electrons across the membrane of chromaffin granules (CG) present in the adrenal medulla, supporting the biosynthesis of norepinephrine in the CG matrix. We have conducted a detailed characterization of cyt b561 using electron paramagnetic resonance (EPR) and optical spectroscopy on the wild-type and mutant forms of the cytochrome expressed in insect cells. The gz = 3.7 (low-potential heme) and gz = 3.1 (high-potential heme) signals were found to represent the only two authentic hemes of cyt b561; models that propose smaller or greater amounts of heme can be ruled out. We identified the axial ligands to hemes in cyt b561 by mutating four conserved histidines (His54 and His122 at the matrix-side heme center and His88 and His161 at the cytoplasmic-side heme center), thus confirming earlier structural models. Single mutations of any of these histidines produced a constellation of spectroscopic changes that involve not one but both heme centers. We hypothesize that the two hemes and their axial ligands in cyt b561 are integral parts of a structural unit that we term the "kernel". Histidine to glutamine substitutions in the cytoplasmic-side heme center but not in the matrix-side heme center led to the retention of a small fraction of the low-potential heme with gz = 3.7. We provisionally assign the low-potential heme to the matrix side of the membrane; this arrangement suggests that the membrane potential modulates electron transport across the CG membrane.  相似文献   

4.
Duodenal cytochrome b (Dcytb or Cybrd1) is an iron-regulated protein, highly expressed in the duodenal brush border membrane. It has ferric reductase activity and is believed to play a physiological role in dietary iron absorption. Its sequence identifies it as a member of the cytochrome b(561) family. A His-tagged construct of human Dcytb was expressed in insect Sf9 cells and purified. Yields of protein were increased by supplementation of the cells with 5-aminolevulinic acid to stimulate heme biosynthesis. Quantitative analysis of the recombinant Dcytb indicated two heme groups per monomer. Site-directed mutagenesis of any of the four conserved histidine residues (His 50, 86, 120 and 159) to alanine resulted in much diminished levels of heme in the purified Dcytb, while mutation of the non-conserved histidine 33 had no effect on the heme content. This indicates that those conserved histidines are heme ligands, and that the protein cannot stably bind heme if any of them is absent. Recombinant Dcytb was reduced by ascorbate under anaerobic conditions, the extent of reduction being 67% of that produced by dithionite. It was readily reoxidized by ferricyanide. EPR spectroscopy showed signals from low-spin ferriheme, consistent with bis-histidine coordination. These comprised a signal at gmax=3.7 corresponding to a highly anisotropic species, and another at gmax=3.18; these species are similar to those observed in other cytochromes of the b561 family, and were reducible by ascorbate. In addition another signal was observed in some preparations at gmax=2.95, but this was unreactive with ascorbate. Redox titrations indicated an average midpoint potential for the hemes in Dcytb of +80 mV+/-30 mV; the data are consistent with either two hemes at the same potential, or differing in potential by up to 60 mV. These results indicate that Dcytb is similar to the ascorbate-reducible cytochrome b561 of the adrenal chromaffin granule, though with some differences in midpoint potentials of the hemes.  相似文献   

5.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two hemes b with different midpoint potentials (+150 and +60 mV) and participates in transmembrane electron transport from extravesicular ascorbate to an intravesicular monooxygenase, dopamine beta-hydroxylase. Treatment of oxidized cytochrome b(561) with diethylpyrocarbonate caused a downshift of midpoint potential for the lower component, and this shift was prevented by the presence of ascorbate during the treatment. Present EPR analyses showed that, upon the treatment, the g(z) = 3.69 heme species was converted to a non-ascorbate-reducible form, although its g(z)-value showed no appreciable change. The treatment had no effect on the other heme (the g(z) = 3.13 species). Raman data indicated that the two heme b centers adopt a six-coordinated low-spin state, in both the reduced and oxidized forms. There was no significant effect of diethylpyrocarbonate-treatment on the Raman spectra of either form, but the reducibility by ascorbate differed significantly between the two hemes upon the treatment. The addition of ferrocyanide enhanced both the reduction rate and final reduction level of the diethylpyrocarbonate-treated cytochrome b(561) when ascorbate was used as a reductant. This observation suggests that ferrocyanide scavenges monodehydroascorbate radicals produced by the univalent oxidation of ascorbate and, thereby, increases both the reduction rate and the final reduction level of the heme center on the intravesicular side of the diethylpyrocarbonate-treated cytochrome. These results further clarify the physiological role of this heme center as the electron donor to the monodehydroascorbate radical.  相似文献   

6.
Functional coupling between enzymes of the chromaffin granule membrane   总被引:5,自引:0,他引:5  
The reactions of cytochrome b561 with other redox-active components of the adrenal chromaffin granule were examined using optical difference spectroscopy. It was shown that there is no direct electron transfer between the cytochrome and dopamine beta-hydroxylase, but that in the presence of ascorbate, turnover of dopamine beta-hydroxylase causes an oxidation of the cytochrome, which is partially reversed by the action of the mitochondrial NADH:A-. oxidoreductase. Thus, these three proteins may be functionally coupled via ascorbate. A quantitative study of the relationship between the redox state of the cytochrome and the ascorbate radical concentration measured by EPR showed that ascorbate reduces the cytochrome in a one-electron transfer reaction. Generation of a proton electrochemical gradient across the granule membrane causes only a small (20 mV) increase in the cytochrome midpoint potential suggesting the cytochrome is not a proton pump. The data are consistent with a model in which cytochrome b561, by reacting with ascorbate or ascorbate free radical on either side of the granule membrane, could couple the ascorbate-consuming reaction of the dopamine beta-hydroxylase inside the chromaffin granule to the ascorbate-regenerating reaction of the NADH:A-. oxidoreductase on the outer mitochondrial membrane. The H+-ATPase of the granule membrane could both drive the flow of electrons in the direction from cytosol to granule and replenish protons consumed by the turnover of dopamine beta-hydroxylase inside the granule.  相似文献   

7.
Human erythrocytes contain an unidentified plasma membrane redox system that can reduce extracellular monodehydroascorbate by using intracellular ascorbate (Asc) as an electron donor. Here we show that human erythrocyte membranes contain a cytochrome b(561) (Cyt b(561)) and hypothesize that it may be responsible for this activity. Of three evolutionarily closely related Cyts b(561), immunoblots of human erythrocyte membranes showed only the duodenal cytochrome b(561) (DCytb) isoform. DCytb was also found in guinea pig erythrocyte membranes but not in erythrocyte membranes from the mouse or rat. Mouse erythrocytes lost a majority of the DCytb in the late erythroblast stage during erythropoiesis. Absorption spectroscopy showed that human erythrocyte membranes contain an Asc-reducible b-type Cyt having the same spectral characteristics as recombinant DCytb and biphasic reduction kinetics, similar to those of the chromaffin granule Cyt b(561). In contrast, mouse erythrocytes did not exhibit Asc-reducible b-type Cyt activity. Furthermore, in contrast to mouse erythrocytes, human erythrocytes much more effectively preserved extracellular Asc and transferred electrons from intracellular Asc to extracellular ferricyanide. These results suggest that the DCytb present in human erythrocytes may contribute to their ability to reduce extracellular monodehydroascorbate.  相似文献   

8.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. To elucidate the mechanism of the transmembrane electron transfer, effects of the treatment of purified cytochrome b(561) with diethyl pyrocarbonate, a reagent specific for histidyl residues, were examined. We found that when ascorbate was added to the oxidized form of diethyl pyrocarbonate-treated cytochrome b(561), less than half of the heme iron was reduced but with a very slow rate. In contrast, radiolytically generated monodehydroascorbate radical was oxidized rapidly by the reduced form of diethyl pyrocarbonate-modified cytochrome b(561), as observed for untreated cytochrome b(561). These results indicate that the heme center specific for the electron acceptance from ascorbate was perturbed by the modification of amino acid residues nearby. We identified the major modification sites by mass spectrometry as Lys85, His88, and His161, all of which are fully conserved and located on the extravesicular side of cytochrome b(561) in the membranes. We suggest that specific N-carbethoxylation of the histidyl ligands of the heme b at extravesicular side abolishes the electron-accepting ability from ascorbate.  相似文献   

9.
(1) Redox titrations of cytochrome b-561 have been performed with the purified cytochrome and with intact and detergent-solubilized chromaffin-granule membranes. (2) The midpoint redox potential of the cytochrome is 100–130 mV; this depends upon the composition of the buffer, but is independent of pH in the range 5.5–7.5; partial proteolysis of the cytochrome raises the midpoint potential to 160 mV. (3) The Nernst plots of titration data have slopes of 75–115 mV, and are in some cases sigmoid in shape. This may be explained by negative cooperativity during redox transitions in oligomeric cytochrome b-561. (4) Measurements of the haem and cytochrome content of chromaffin granule membrane suggest a haem content of 1 mol/mol protein. (5) Chemical crosslinking of cytochrome b-561 suggests that it may exist as an oligomer of 4–6 polypeptide chains within the chromaffin granule membrane. Aggregation of purified cytochrome b-561 was shown by gel filtration studies and by immunological methods in SDS-polyacrylamide gels. Studies of the molecular weight of the aggregates suggest that the monomer has a molecular weight close to 22 000, but migrates anomalously slowly during electrophoresis.  相似文献   

10.
Bovine adrenal chromaffin granule cytochrome (cyt) b561 is a transmembrane hemoprotein that plays a key role in transporting reducing equivalents from ascorbate to dopamine-beta-hydroxylase for catecholamine synthesis. We have developed procedures for expression and purification of functional bovine adrenal cyt b561 in insect and yeast cell systems. The bovine cyt b561 coding sequence, with or without a hexahistidine-tag sequence at the C-terminus, was cloned into the pVL1392 transfer vector under the control of the polyhedrin promoter to generate recombinant baculovirus for protein expression in Sf9 insect cells (approximately 0.5 mg detergent-solubilized cyt b561/L culture). For the yeast system, the cyt b561 cDNA was modified with a hexahistidine-tag sequence at the C-terminus, and inserted into the pPICZB vector under the control of the alcohol oxidase promoter. The recombinant plasmid was transformed into Pichia pastoris GS115 competent cells to give methanol-inducible cyt b561 expression (approximately 0.7 mg detergent-solubilized cyt b561/L culture). Recombinant His-tagged cyt b561 expressed in Sf9 or Pichia cells was readily solubilized from membrane fractions with dodecyl maltoside and purified to electrophoretic homogeneity by one-step chromatography on Ni-NTA affinity resin. The purified recombinant cytochrome from both systems had a heme to protein ratio close to two and was fully functional, as judged by comparison with the spectroscopic and kinetic parameters of the endogenous cytochrome from chromaffin granules. A novel procedure for isolation of chromaffin granule membranes was developed to utilize frozen adrenal glands instead of fresh tissue.  相似文献   

11.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   

12.
The kinetics of light-driven electron flow and the nature of redox centers at apparent photosynthetic membrane growth initiation sites in Rhodopseudomans sphaeroides were compared to those of intracytoplasmic photosynthetic membranes. In sucrose gradients, these membrane growth sites sediment more slowly than intracytoplasmic membrane-derived chromatophores and form an upper pigmented band. Cytochromes c1, c2, b561, and b566 were demonstrated in the upper fraction by redox potentiometry; c-type cytochromes were also detected electrophoretically. Signals characteristic of light-induced reaction center bacteriochlorophyll triplet and photooxidized reaction center bacteriochlorophyll dimer states were observed by EPR spectroscopy but the Rieske iron-sulfur signal of the ubiquinol-cytochrome c2 oxidoreductase was present at a 3-fold reduced level on a reaction center basis in comparison to chromatophores. Flash-induced absorbance measurements of the upper pigmented fraction demonstrated reaction center primary and secondary semiquinone anion acceptor signals, but cytochrome b561 photoreduction and cytochrome c1/c2 reactions occurred at slow rates. This fraction was enriched approximately 2- and 4-fold in total b- and c-type cytochromes, respectively, per reaction center over chromatophores, but photoreducible b-type cytochrome was lower. Measurements of respiratory activity indicated a 1.6-fold higher level of succinate-cytochrome c oxidoreductase/reaction center than in chromatophores, but the apparent turnover rates in both preparations were low. Overall, the results suggest that complete cycles of rapid, light-driven electron flow do not occur merely by introduction of newly synthesized reaction centers into respiratory membrane, but that subsequent synthesis and assembly of appropriate components of the ubiquinol-cytochrome c2 oxidoreductase is required.  相似文献   

13.
Adrenal cytochrome b(561) (cyt b(561)), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b(561) (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (b(H)) peak were seen with mutation of His92; the largest changes in the low-potential (b(L)) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g=3.1 signal (b(H)) but not the g=3.7 signal (b(L)). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the b(H) transition; mutations in His110 produced the largest decreases in DeltaA(561) for the b(L) transition. These results indicate that His92 can be considered part of the b(H) heme center, and His110 part of the b(L) heme center, in adrenal cyt b(561).  相似文献   

14.
Kipp BH  Kelley PM  Njus D 《Biochemistry》2001,40(13):3931-3937
Cytochrome b(561) mediates equilibration of the ascorbate/semidehydroascorbate redox couple across the membranes of secretory vesicles. The cytochrome is reduced by ascorbic acid and oxidized by semidehydroascorbate on either side of the membrane. Treatment with diethyl pyrocarbonate (DEPC) inhibits reduction of the cytochrome by ascorbate, but this activity can be restored by subsequent treatment with hydroxylamine, suggesting the involvement of an essential histidine residue. Moreover, DEPC inactivates cytochrome b(561) more rapidly at alkaline pH, consistent with modification of a histidine residue. DEPC does not affect the absorption spectrum of cytochrome b(561) nor does it change the midpoint reduction potential, confirming that histidine modification does not affect the heme. Ascorbate protects the cytochrome from inactivation by DEPC, indicating that the essential histidine is in the ascorbate-binding site. Further evidence for this is that DEPC treatment inhibits oxidation of the cytochrome by semidehydroascorbate but not by ferricyanide. This supports a reaction mechanism in which ascorbate loses a hydrogen atom by donating a proton to histidine and transferring an electron to the heme.  相似文献   

15.
Cytochrome bd-type ubiquinol oxidase contains two hemes b (b(558) and b(595)) and one heme d as the redox metal centers. To clarify the structure of the reaction center, we analyzed Escherichia coli cytochrome bd by visible absorption, EPR and FTIR spectroscopies using azide and cyanide as monitoring probes for the exogenous ligand binding site. Azide-binding caused the appearance of a new EPR low-spin signal characteristic of ferric iron-chlorin-azide species and a new visible absorption band at 647 nm. However, the bound azide ((14)N(3)) anti-symmetric stretching infrared band (2, 010.5 cm(-1)) showed anomalies upon (15)N-substitutions, indicating interactions with surrounding protein residues or heme b(595) in close proximity. The spectral changes upon cyanide-binding in the visible region were typical of those observed for ferric iron-chlorin species with diol substituents in macrocycles. However, we found no indication of a low-spin EPR signal corresponding to the ferric iron-chlorin-cyanide complexes. Instead, derivative-shaped signals at g = 3.19 and g = 7.15, which could arise from the heme d(Fe(3+))-CN-heme b(595)(Fe(3+)) moiety, were observed. Further, after the addition of cyanide, a part of ferric heme d showed the rhombic high-spin signal that coexisted with the g(z) = 2.85 signal ascribed to the minor heme b(595)-CN species. This indicates strong steric hindrance of cyanide-binding to ferric heme d with the bound cyanide at ferric heme b(595).  相似文献   

16.
Bérczi A  Su D  Asard H 《FEBS letters》2007,581(7):1505-1508
Ascorbate-reducible cytochromes b561 (Cyts-b561) are a class of intrinsic trans-membrane proteins. Tonoplast Cyt-b561 (TCytb), one of the four Cyt-b561 isoforms in Arabidopsis was localized to the tonoplast. We demonstrate here that the optical spectra, EPR spectra and redox potentials of recombinant TCytb are similar to those of the well characterized bovine chromaffin granule Cyt-b561. We provide evidence for the reduction of ferric-chelates by the reduced TCytb. It is also shown that TCytb is capable of trans-membrane electron transport from intracellular ascorbate to extracellular ferric-chelates in yeast cells.  相似文献   

17.
Tumor suppressor protein 101F6, a gene product of the 3p21.3 (human) and 9F1 (mouse) chromosomal region, has recently been identified as a member of the cytochrome b561 (Cyt-b561) protein family by sequence homology. The His6-tagged recombinant mouse tumor suppressor Cyt-b561 protein (TSCytb) was recently expressed in yeast and purified, and the ascorbate reducibility was determined. TSCytb is auto-oxidizable and has two distinct heme b centers with redox potentials of ~40 and ~140 mV. Its split α-band in the dithionite-reduced spectrum at both 295 and 77 K is well resolved, and the separation between the two α-peaks is ~7 nm (~222 cm−1). Singular value decomposition analysis of the split α-band in the ascorbate-reduced spectra revealed the presence of two major spectral components, each of them with split α-band but with different peak separations (6 and 8 nm). Similar minor differences in peak separation were obtained when the split α-bands in ascorbate-reduced difference spectra at low (<1 mM) and high (>10 mM) ascorbate concentrations were analysed. According to low-temperature electron paramagnetic resonance (EPR) spectroscopy, the two heme b centers are in the low-spin ferric state with maximum principal g values of 3.61 and 2.96, respectively. These values differ from the ones observed for other members of the Cyt-b561 family. According to resonance Raman spectroscopy, the porphyrin rings are in a relaxed state. The spectroscopic results are only partially in agreement with those obtained earlier for the native chromaffin granule Cyt-b561.  相似文献   

18.
Flash-induced redox changes of b-type and c-type cytochromes have been studied in chromatophores from the aerobic photosynthetic bacterium Roseobacter denitrificans under redox-controlled conditions. The flash-oxidized primary donor P+ of the reaction center (RC) is rapidly re-reduced by heme H1 (Em,7 = 290 mV), heme H2 (Em,7 = 240 mV) or low-potential hemes L1/L2 (Em,7 = 90 mV) of the RC-bound tetraheme, depending on their redox state before photoexcitation. By titrating the extent of flash-induced low-potential heme oxidation, a midpoint potential equal to -50 mV has been determined for the primary quinone acceptor QA. Only the photo-oxidized heme H2 is re-reduced in tens of milliseconds, in a reaction sensitive to inhibitors of the bc1 complex, leading to the concomitant oxidation of a cytochrome c spectrally distinct from the RC-bound hemes. This reaction involves cytochrome c551 in a diffusional process. Participation of the bc1 complex in a cyclic electron transfer chain has been demonstrated by detection of flash-induced reduction of cytochrome b561, stimulated by antimycin and inhibited by myxothiazol. Cytochrome b561, reduced upon flash excitation, is re-oxidized slowly even in the absence of antimycin. The rate of reduction of cytochrome b561 in the presence of antimycin increases upon lowering the ambient redox potential, most likely reflecting the progressive prereduction of the ubiquinone pool. Chromatophores contain approximately 20 ubiquinone-10 molecules per RC. At the optimal redox poise, approximately 0.3 cytochrome b molecules per RC are reduced following flash excitation. Cytochrome b reduction titrates out at Eh < 100 mV, when low-potential heme(s) rapidly re-reduce P+ preventing cyclic electron transfer. Results can be rationalized in the framework of a Q-cycle-type model.  相似文献   

19.
Characterization of the multiple forms of cytochrome b559 in photosystem II   总被引:2,自引:0,他引:2  
Cytochrome b559 is an essential component of the photosystem II (PSII) protein complex. Its function, which has long been an unsolved puzzle, is likely to be related to the unique ability of PSII to oxidize water. We have used EPR spectroscopy and spectrophotometric redox titrations to probe the structure of cytochrome b559 in PSII samples that have been treated to remove specific components of the complex. The results of these experiments indicate that the low-temperature photooxidation of cytochrome b559 does not require the presence of the 17-, 23-, or 33-kDa extrinsic polypeptides or the Mn complex (the active site in water oxidation). We observe a shift in the g value of the EPR signal of cytochrome b559 upon warming a low-temperature photooxidized sample, which presumably reflects a change in conformation to accommodate the oxidized state. At least three redox forms of cytochrome b559 are observed. Untreated PSII membranes contain one high-potential (375 mV) and one intermediate-potential (230 mV) cytochrome b559 per PSII. Thylakoid membranes also appear to contain one high-potential and one intermediate-potential cytochrome b559 per PSII, although this measurement is more difficult due to interference from other cytochromes. Removal of the 17- and 23-kDa extrinsic polypeptides from PSII membranes shifts the composition to one intermediate-potential (170 mV) and one low-potential (5 mV) cytochrome b559. This large decrease in potential is accompanied by a very small g-value change (0.04 at gz), indicating that it is the environment and not the ligand field of the heme which changes significantly upon the removal of the 17- and 23-kDa polypeptides.  相似文献   

20.
Cytochrome b561 from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups. We verified that purified cytochrome b561 can donate electron equivalents directly to cytochrome c. The purified cytochrome b561 was successfully reconstituted into cholesterol-phosphatidylcholine-phosphatidylglycerol vesicles by a detergent-dialysis and extrusion method. When ascorbate-loaded vesicles with cytochrome b561 were mixed with ferricytochrome c, the intravesicular ascorbate was able to reduce external thiazole blue or cytochrome c. The reduction of thiazole blue or cytochrome c was dependent on the presence of cytochrome b561 in the vesicle membranes. Pre-treatment of cytochrome b561 with diethylpyrocarbonate suppressed the reduction of extravesicular cytochrome c significantly, confirming that the reduction was not due to leakage of ascorbate from the vesicles. The topology of the reconstituted cytochrome b561 in the vesicle membranes was examined by treatment with trypsin followed by SDS-PAGE and MALDI-TOF-MS analyses. Only one major cleavage site at Lys191 was identified, indicating that cytochrome b561 was reconstituted into the membranes in an inside-out orientation irrespective of the modification with diethylpyrocarbonate. The addition of a soluble form of dopamine beta-hydroxylase to the external medium resulted in the successful reconstitution of the hydroxylation activity towards tyramine, an analogue of dopamine, suggesting that a direct electron transfer via complex formation occurred. This activity was enhanced significantly upon the addition of ferricyanide as a mediator between cytochrome b561 and dopamine beta-hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号