首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A complex polydispersity became apparent when the poly(glycerophosphate) lipoteichoic acid of Enterococcus faecalis was chromatographed on DEAE-sephadex. The chain length varied between 13 and 33 glycerophosphate residues per lipid anchor. In parallel, the extent of chain glycosylation increased from 0.2 to 0.4 diglucosyl residues per glycerophosphate unit. Substitution with D-alanine ester showed a reverse distribution dropping with increasing chain length from 0.53 to 0.23 mol D-alanine per mol phosphorus. Variations in the fatty acid composition were also observed. The results extent and modify the current picture of lipoteichoic acid biosynthesis. They further suggest that during infection the mammalian organism may be confronted particularly with long-chain less hydrophobic molecular species.  相似文献   

2.
This study shows for the first time microheterogeneity of 1,3-linked poly(glycerophosphate) lipoteichoic acids. The lipoteichoic acids investigated were those of Enterococcus faecalis Kiel 27738 (I), Enterococcus hirae (Streptococcus faecium) ATCC 9790 (II), and Leuconostoc mesenteroides DMS 20343 (III). Lipoteichoic acids II and III are partially substituted by mono-, di-, tri-, and tetra-alpha-D-glucopyranosyl residues with (1----2) interglycosidic linkages. Lipoteichoic acid I is substituted with alpha-kojibiosyl residues only. Lipoteichoic acids I and III additionally carry D-alanine ester. Lipoteichoic acids were separated on columns of concanavalin-A-Sepharose according to their increasing number of glycosyl substituents per chain. It was evident that all molecular species are usually glycosylated and that alanine ester and glycosyl residues occur on the same chains. The chain lengths of lipoteichoic acid I and II vary between 9-40 glycerophosphate residues, whereas those of lipoteichoic acid III appear to be uniform (33 +/- 2 residues). Molecular species differ in the extent of glycosylation but their content of alanyl residues is fairly constant. All lipoteichoic acids contain a small fraction (5-15%) different in composition from the bulk and most likely reflecting an early stage of biosynthesis. Two procedures for chain length determination of poly(glycerophosphate) lipoteichoic acids are described.  相似文献   

3.
On the basic structure of poly(glycerophosphate) lipoteichoic acids   总被引:11,自引:0,他引:11  
Poly(glycerophosphate) lipoteichoic acids from 24 Gram-positive bacteria of the genera Bacillus, Enterococcus, Lactobacillus, Lactococcus, Listeria, Staphylococcus, and the streptococcal pyogenic and oral group were analyzed. The 1,3-linked poly(glycerophosphate) structure was proved by analysis of glycerol and glycerophosphates after acid and alkaline hydrolysis. Using the molar ratios of glycolipid to phosphorus (A) and phosphomonoester to phosphorus after periodate oxidation followed by hydrazinolysis (B) or beta-elimination (C), we show that all lipoteichoic acids contain a single unbranched poly(glycerophosphate) chain and that the chain is uniformly phosphodiester-linked to C-6 of the nonreducing hexopyranosyl residue of the glycolipid moiety. On some chains minor phosphate-containing substituents were detected whose structure remains to be clarified. The lipoteichoic acids of enterococci and listeria strains were separated by hydrophobic interaction chromatography into glycolipid- and phosphatidylglycolipid-containing molecular species. The phosphatidylglycolipid moieties were structurally characterized after liberation from lipoteichoic acids with moist acetic acid. After periodate oxidation of lipoteichoic acids beta-elimination released both phosphatidic acid and the poly(glycerophosphate) chain. This indicates together with the sequence analysis of the released phosphatidylglycolipid that the phosphatidyl residue is located at C-6 of the reducing hexosyl residue of the glycolipid moiety and the poly(glycerophosphate) chain at C-6 of the nonreducing one. Together with earlier observations these results complete the evidence for the structural and possibly biosynthetic relationship between lipoteichoic acids and glycerophosphoglycolipids.  相似文献   

4.
By hydrophobic interaction chromatography on octyl-Sepharose, lipopolysaccharide (LPS) of Escherichia coli Re mutant and of wild-type smooth-form (S-form) Salmonella typhimurium and Salmonella abortus equi is fractionated according to increasing amount of fatty acids. Thereby a fractionation of S-form LPS according to the length of the O-polysaccharide chain also occurs, because with increasing of fatty acids there is a decrease in the mean length of the O-polysaccharide chain from approximately 30 to 4 repeating units. Molecular species of Re-mutant LPS contain four 3-hydroxytetradecanoyl residues in addition to which dodecanoic, tetradecanoic and possibly hexadecanoic acid, appear in this sequence. Among the molecular species of S-form LPS, dodecanoic, tetradecanoic and hexadecanoic acids appear in the same order, but in contrast to Re-mutant LPS a significant fraction of S-form LPS contains less than four 3-hydroxytetradecanoyl residues. Hydrophobic interaction chromatography also proved an effective one-step purification procedure of LPS as was shown with a crude preparation from S-form S. typhimurium.  相似文献   

5.
The partial characterization of the structure of the lipoglycan (LG) from Acholeplasma axanthum is added to the previous complete structural analysis of the lipoglycan from A. granularum. The terminal sequence of A. axanthum LG is Glcp(beta 1----2)-Glcp(beta 1----2)-Glcp(beta 1----6)-; of A. granularum Glcp(beta 1----2)-Glcp(alpha 1----4)-Glcp(beta 1----4)-. These specific residues define the major antigenic determinants of the LG as determined by blockage of hemagglutination of LG coated erythrocytes by specific oligosaccharides and binding of radiolabeled LG to specific immunoglobulins. The binding of LG to mammalian cells occurs by an interaction between specific eucaryotic cell receptors and the internal sequence of the oligosaccharide chain of LG. Size and sugar chains of LG rather than fatty acid residues appears to define the binding site on the LG.  相似文献   

6.
Pneumococcal lipoteichoic acid was extracted and purified by a novel, quick and effective procedure. Structural analysis included methylation, periodate oxidation, Smith degradation, oxidation with CrO3, and fast-atom-bombardment mass spectrometry. Hydrolysis with 48% (by mass) HF and subsequent phase partition yielded the lipid anchor (I), the dephosphorylated repeating unit of the chain (II) and a cleavage product of the latter (III). The proposed structures are: (I) Glc(beta 1----3)AATGal(beta 1----3)Glc(alpha 1----3)acyl2Gro, (II) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc(beta 1----1)ribitol and (III) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc, where AATGal is 2-acetamido-4-amino-2,4,6-trideoxygalactose, and all sugars are in the pyranose form and belong to the D-series. Alkaline phosphodiester cleavage of lipoteichoic acid, followed by treatment with phosphomonoesterase, resulted in the formation of II and IV, with IV as the prevailing species: [sequence: see text] The linkage between the repeating units was established as phosphodiester bond between ribitol 5-phosphate and position 6 of the glucosyl residue of adjacent units. The chain was shown to be linked to the lipid anchor by a phosphodiester between its ribitol 5-phosphate terminus and position 6 of the non-reducing glucosyl terminus of I. The lipoteichoic acid is polydisperse: the chain length may vary between 2 and 8 repeating units and variations were also observed for the fatty acid composition of the diacylglycerol moiety. Preliminary results suggest that repeating units II and IV are enriched in separate molecular species. All species were associated with Forssman antigenicity, albeit to a various extent when related to the non-phosphocholine phosphorus. Owing to its unique structure, the described macroamphiphile may be classified as atypical lipoteichoic acid.  相似文献   

7.
The lipoteichoic acid from Lactococcus lactis Kiel 48337 was analyzed. It had 61% of its glycerophosphate residues substituted with alpha-D-galactopyranosyl residues. Non-substituted glycerophosphate residues were split off by two alkaline hydrolyses and an intermediate enzymatic phosphomonoester cleavage. The resulting (GalGroP)nGroGal and (GalGroP)nGlc2Gro oligomers were separated by chromatography on DEAE-Sephadex into 10 pairs of molecular species with n from 1 to 10. The relative frequencies of GalGro and these oligomers were close to the values calculated by computer simulation for a random distribution of chain substituents. A similar series of oligomers was obtained in one step by hydrolysis of the lipoteichoic acid with 98% (by vol.) acetic acid. Due to side reactions, the picture was less precise but nevertheless indicative of the same distribution pattern. The data provide indirect evidence that the alanine ester substituents of the native lipoteichoic acid (Ala/P = 0.38) occupy the free positions between the galactosylated oligomers and are therefore themselves distributed randomly.  相似文献   

8.
The Streptococcus sp. studied here is closely related to Streptococcus pneumoniae with 98.6% 16S rRNA similarity and 65% DNA/DNA homology. We isolated the lipoteichoic acid and the membrane glycolipids whose structures were established using conventional procedures and NMR spectroscopy. The lipoteichoic acid contains a linear 1,3-linked poly(glycerophosphate) chain which is partly substituted with D-alanine ester and is phosphodiester-linked to O6 of beta-D-Galf(1-->3)acyl2Gro. This lipoteichoic acid is the first example in which a monohexosylglycerol serves as the glycolipid anchor; and with an average chain length of 10 glycerophosphate residues it is the shortest known to date. MS analysis, applied for the first time to a native acylated lipoteichoic acid, revealed a continuous increase in chain length from seven to 17 glycerophosphate residues with a maximum at 10, and allowed identification of the fatty acid combinations. Membrane glycolipids consisted of beta-D-Galf(1-->3)acyl2Gro (9%), alpha-D-Glcp(1-->3)acyl2Gro (22%), alpha-D-Galp(1-->2)-alpha-D-Glcp(1-->3)acyl2Gro (64%) and alpha-D-Galp(1-->2)-(6-O-acyl)-alpha-D-Glcp(1-->3)acyl2Gro (5%). It is noteworthy that in lipoteichoic acid biosynthesis, Galfacyl2Gro, a less abundant membrane glycolipid, is selected as the lipid anchor. Despite the genetic relatedness to Streptococcus pneumoniae, the lipoteichoic acid structure is quite different to the complex structure of pneumococcal lipoteichoic acid [T. Behr et al. (1992) Eur. J. Biochem. 207, 1063-1075], thus providing an example that minor differences in DNA sequence exert major changes in macromolecular structure.  相似文献   

9.
A convenient method for the separation of molecular species of sphingomyelin by reversed-phase high-performance liquid chromatography (HPLC) is described. Sphingomyelin species from bovine brain and sheep and pig erythrocytes were resolved into 10-12 separate peaks on a micro -BondaPak C(18) or Nucleosil-5-C(18) reversedphase column with methanol-5 mM potassium phosphate buffer, pH 7.4, 9:1 (v/v) as the solvent. Detection was at 203-205 nm. The sphingomyelin species were primarily resolved due to specific hydrophobic interaction of their fatty acid and sphingoid chains with the alkyl ligand of the stationary phase. The retention time of the sphingomyelin species increased progressively as the number of carbon atoms in the hydrophobic chains increased in the homologous series. The presence of one double bond in the molecule reduced the retention time significantly. Introduction of a second double bond in the fatty acid side chain did not reduce the retention time to the same extent as the first double bond. The presence of a trans double bond in the sphingoid moiety increased the retention time of sphingomyelin more than did a cis double bond in the fatty acid side chain. The differential hydrophobic interaction observed between the ligand of the stationary phase and different alkyl chains of the sphingomyelin species illustrates that reversed-phase HPLC technique can be conveniently used to study the extent of relative hydrophobicity of different types of alkyl chains.-Jungalwala, F. B., V. Hayssen, J. M. Pasquini, and R. H. McCluer. Separation of molecular species of sphingomyelin by reversed-phase high-performance liquid chromatography.  相似文献   

10.
The lipid macroamphiphile of Bifidobacterium bifidum subsp. pennsylvanicum DSM 20239 was extracted with phenol/water and purified by treatment with nucleases and hydrophobic interaction chromatography. From analytical data, the results of Smith degradation, hydrolysis with HF and methylation studies, the following structure is proposed: (formula; see text) where n and m are approximately 7-10 and 8-15, respectively. The monoglycerophosphate residues have the sn-glycero-1-phosphate configuration; 20-50% of them are substituted with L-alanine in ester linkage. The lipid anchor is most likely a galactosyldiacylglycerol, part of which carries a third fatty acid. This is the first example among gram-positive bacteria of a glycerophosphate-containing lipid macroamphiphile that carries the glycerophosphate residues as monomeric side chains on a lipoglycan. Further, it contains L-alanine in place of the D-alanine found in lipoteichoic acids.  相似文献   

11.
A new method is described for the separation of individual molecular species of the aminophospholipids, phosphatidylethanolamine and phosphatidylserine. Trinitrobenzene-sulfonic acid was used to derivatize both aminophospholipids and the derivatives were purified by thin-layer chromatography. A reversed-phase high performance liquid chromatography technique was developed to separate and quantify individual molecular species based upon ultraviolet detection of the attached chromophore. The retention times of the molecular species on the C18 reversed-phase column were longer with increasing carbon chain length and decreasing degree of unsaturation of fatty acyl chain. The overall procedure allowed a quantitative recovery of the aminophospholipid species. The lower limit of detection was about 10 pmol and a linear response was observed in the range of 0.1-10 nmol of phospholipid. Using this method, we were able to separate and quantify trinitrophenyl-phosphatidylethanolamine molecular species of both subclasses (diacyl and alkenyl) from human red blood cells and rat brains. Separation of species was confirmed by gas-liquid chromatographic analysis of the fatty acid content of each peak and by thermospray liquid chromatography-mass spectrometry. This new method provides a convenient and sensitive technique for studies of aminophospholipid molecular species composition. Furthermore, it appears to be a useful tool for the analysis of asymmetric distribution of these species in biological membranes.  相似文献   

12.
The lipoteichoic acids from Bifidobacterium bifidum spp. pennsylvanicum were extracted from cytoplasmic membranes or from disintegrated bacteria with aqueous phenol and purified by gel chromatography. The lipoteichoic acid preparations contained phosphate, glycerol, galactose, glucose and fatty acids in a molar ratio of 1.0:1.0:1.3:1.2:0.3. Chemical analysis and NMR studies of the native preparations and of products from various acid and alkaline hydrolysis procedures gave evidence for the structure of two lipoteichoic acids. The lipid anchor appeared to be 3-O-(6'-(sn-glycero-1-phosphoryl)diacyl-beta-D-galactofuranosyl)-sn-1, 2-diacylglycerol. The polar part showed two structural features not previously described for lipoteichoic acids. A 1,2-(instead of the usual 1,3-) phosphodiester-linked sn-glycerol phosphate chain is only used substituted at the terminal glycerol unit with a linear polysaccharide, containing either beta(1----5)-linked D-galactofuranosyl groups or beta(1----6)-linked D-glucopyranosyl groups.  相似文献   

13.
Structural studies were carried out on two kinds of teichuronic acid-glycopeptide complexes (designated as TU-GP-I and TU-GP-II) isolated from lysozyme digest of N-acetylated cell walls of Bacillus megaterium AHU 1375 by ion-exchange chromatography and gel chromatography. TU-GP-I, accounting for about 25% of the cell walls, contained N-acetylmannosaminuronic acid, N-acetylglucosamine, glucose, galactose, glycerol, and phosphorus in an approximate molar ratio of 1:1:2:1:0.5:0.5, together with small amounts of glycopeptide components. TU-GP-II, accounting for about 9% of the cell walls, contained glucuronic acid, glucose, and fucose in a molar ratio of about 2:1.5:1, together with small amounts of glycopeptide components. The results of analyses involving Smith degradation, chromium oxidation, methylation, acetolysis, and H-NMR measurement led to the conclusion that the polysaccharide chain of TU-GP-I comprised repeating units,----6) Glc(alpha 1----3)-ManNAcUA(beta 1----4)[Gal(alpha 1----3)][Glc(beta 1----6)]GlcNAc(beta 1----. About half of the repeating units were substituted by glycerophosphoryl residues at C-6 of the beta-glucosyl residues linked to the N-acetylglucosamine residues. By means of a similar procedure, the polysaccharide chain of TU-GP-II was shown to comprise repeating units,----4)GlcUA(alpha 1----3)GlcUA(alpha 1----3)Glc(alpha 1----3)Fuc(alpha 1----, of which about half were substituted by alpha-glucosyl residues at C-3 of the 4-substituted glucuronosyl residues.  相似文献   

14.
Lipoteichoic acid (LTA) of group A streptococci, type M 29 was studied. Chemical and 13C NMR spectroscopic analysis showed that the polymer contained poly(glycerophosphate) chain consisting of 12-14 glycerophosphate elements united by the 1----3 type phosphodiether bond and diglucosylglyceride. Oleic, stearic, palmitic and palmitoleic fatty acids predominated in the polymer composition. The content of the fatty acids amounted approximately to 2 per cent of LTA dry weight. The poly(glycerophosphate) chain contained 6-7 ether linked alanyl moieties. The results of the LTA biological study were analyzed in comparison to the data on a previous study of antitumor and cardiotoxic properties of teichoic acid from Streptomyces levoris K-3053 which is structurally close to the LTA hydrophilic moiety. It was assumed that the molecule negative charge had an effect on the cardiotoxic and antitumor activity.  相似文献   

15.
Lipoteichoic acids were isolated from eleven species of the genus Staphylococcus using phenol-water partition and hydrophobic chromatography on octyl-Sepharose CL-4B. The lipoteichoic acids purified could be visualized by SDS-PAGE. They were shown to be composed of a hydrophilic poly(glycerophosphate) chain covalently linked to gentiobiosyldiacylglycerol, the common lipid anchor of these molecules. Glycerophosphate units of the hydrophilic chain were found to be partly substituted with ester-linked d-alanine, except in the case of S. cohnii. The lipoteichoic acids isolated from S. cohnii, S. hominis, S. saprophyticus and S. simulans contain (1–2)-linked N-acetylglucosamine as an additional substituent of the poly(glycerophosphate) backbone.Abbreviations GLC gas-liquid chromatography - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TLC thin-layer chromatography  相似文献   

16.
The specificity of the sialic acid-binding lectin from the snail Cepaea hortensis, purified by affinity chromatography on fetuin-Sepharose, was studied by hemagglutination inhibition assay applying 32 sialic acid derivatives and 14 glycoproteins. 2-alpha-Methyl-9-O-acetyl-NeuAc was the most potent inhibitor, followed closely by 2-alpha-methyl-NeuAc and 2-alpha-benzyl-NeuAc. An axially orientated carboxyl group is a prerequisite for maximal lectin-sugar binding. Neither size nor polarity of the alpha-anomeric substituent significantly influenced inhibition potency. An intact sialic acid N-acetyl group is essential for optimal lectin-sugar interaction. The trihydroxypropyl side chain also is of great importance. However, a bulky hydrophobic substituent at the side chain like a 9-O-tosyl residue did not decrease binding to the lectin. The lectin did not distinguish between NeuAc alpha 2----3Gal beta 1----4Glc and NeuAc alpha 2----6Gal beta 1----4Glc. Among other sugars tested, only N-acetylglucosamine showed inhibition, although 50-fold less. The most potent glycoprotein inhibitors were those carrying O-chains only or preferentially, as ovine submaxillary mucin, bovine submaxillary mucin, and glycophorin A. Tamm-Horsfall protein was an exception being a strong inhibitor, although carrying only N-chains. Asialoglycoproteins were inactive. Glycoproteins containing the NeuAc alpha 2----3Gal sequence inhibited the lectin as well as those with NeuAc alpha 2----6GalNAc. From the results a model of the lectin's binding site for sialic acid is suggested.  相似文献   

17.
X-ray scattering analysis was performed on various types of bacterial lipoteichoic acid in solution. The X-ray data show that all samples investigated were characterized by a similar micellar ultrastructure (hydrophilic moiety on the outside) with a fatty acid chain conformation of the disordered, alpha-type at all temperatures between 5 degrees-53 degrees C. The size distribution of Staphylococcus aureus lipoteichoic acid micelles was sufficiently homogeneous to determine their size and some related molecular parameters by detailed small-angle X-ray scattering analysis. Nearly independent of the degree of D-alanine substitution and the ionic strength of the aqueous dispersion, an average micelle contained about 150 lipoteichoic acid molecules arranged in a spherical assembly with a diameter of about 22 nm, whereby the hydrophilic region occupied an outer shell of about 8.5 nm thickness. Based on the average chain length of lipoteichoic acid, it could be estimated that each glycerophosphate residue contributed by about 0.34 nm to the thickness of the hydrophilic shell as compared to a theoretical value of approximately 0.8 nm for a fully extended chain conformation, indicating a highly coiled conformation of the hydrophilic chain. The bearing of these findings on the properties of membrane-associated and secreted lipoteichoic acids is discussed.  相似文献   

18.
M Shimamura  Y Inoue  S Inoue 《Biochemistry》1985,24(20):5470-5480
Structures of glycopeptides obtained by exhaustive Pronase digestion of high molecular weight (1.7 X 10(5)) salmon egg polysialoglycoprotein have been elucidated. Six principal glycopeptides isolated by gel chromatography and DEAE-Sephadex A-25 chromatography in the absence or presence of borate ion were analyzed for their carbohydrate and amino acid composition, as well as amino acid sequence, and found to be of two distinct types: glycotripeptides, Thr*-Ser*-Glu, and glycotetrapeptides, Thr*-Gly-Pro-Ser, where an asterisk indicates the amino acid residues to which either the Gal beta 1----3GalNAc or Fuc alpha 1----3GalNAc beta 1----3Gal beta 1----4Gal beta 1----3GalNAc chain is attached. Their final yield corresponds to 64% of the original desialylated glycoprotein. In view of the simple amino acid composition of salmon egg polysialoglycoprotein (molar ratio Asp2Thr2Ser3Glu1Pro1Gly1Ala3) and the result of alkaline beta-elimination indicating three carbohydrate units linked to two of two threonine and one of three serine residues, a unique primary structure comprising repetitive sequences of the above two types of glycopeptides, which are interspersed by short nonglycosylated peptides consisting of alanine and aspartic acid, has been proposed for the core protein. The molecular secondary ion mass spectra of underivatized glycopeptides were used to obtain their structural information. The anomeric configuration of the proximal sugar-peptide linkages was proven to be alpha by proton nuclear magnetic resonance spectroscopy. This is the first systematic reported study of O-glycosidically linked glycopeptides by these instrumental methods.  相似文献   

19.
Structural studies were carried out on lipoteichoic acids obtained from defatted cells of 10 Bacillus strains by phenol-water partition followed by chromatography on DEAE-Sephacel and Octyl-Sepharose columns. A group of the tested bacteria (group A), Bacillus subtilis, Bacillus licheniformis, and Bacillus pumilus, was shown to have a diacyl form of lipoteichoic acids which contained D-alanine, D-glucose, D-glucosamine, fatty acids, and glycerol in molar ratios to phosphorus of 0.35 to 0.69, 0.07 to 0.15 to 0.43, 0.06 to 0.11, and 0.95 to 1.18, respectively, whereas the other group (group B), Bacillus coagulans and Bacillus megaterium, had diacyl lipoteichoic acids which contained D-galactose, fatty acids, and glycerol in molar ratios to phosphorus of 0.05 to 0.42, 0.06 to 0.12, and 0.96 to 1.07, respectively. After treatment with 47% hydrogen fluoride, the lipoteichoic acids obtained from group A strains commonly gave a hydrophobic fragment, gentiobiosyl-beta (1----1 or 3)diacylglycerol, in addition to dephosphorylated repeating units, glycerol, 2-D-alanylglycerol, N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, and D-alanyl-N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, whereas the lipoteichoic acids from group B strains yielded diacylglycerol in addition to glycerol and D-galactosyl-alpha (1----2)glycerol. The results together with data from Smith degradations indicate that in the lipoteichoic acids of group A strains the polymer chains, made up of partially alanylated glycerol phosphate and glycosylglycerol phosphate units, are joined to the acylglycerol anchors through gentiobiose. However, in the lipoteichoic acids of group B strains, the partially galactosylated poly(glycerolphosphate) chains are believed to be directly linked to the acylglycerol anchors.  相似文献   

20.
Improved preparation of lipoteichoic acids   总被引:32,自引:0,他引:32  
A procedure is described for measuring the extraction of lipoteichoic acids from gram-positive bacteria in absolute terms. Virtually complete extraction was achieved from various bacteria by hot phenol/water if the cells were disrupted. Extraction of whole and delipidated cells and of the membrane fraction gave considerably lower yields. Most of the nucleic acids co-extracted from disrupted cells was removed by treatment with nucleases. Nuclease-resistant nucleic acid, protein, polysaccharide, and teichoic acid were separated from lipoteichoic acid by anionexchange chromatography on DEAE-Sephacel or hydrophobic interaction chromatography on octyl-Sepharose. Purified preparations were essentially free of polymeric contaminants, retained their alanine ester substitution, and were in the sodium salt form. Hydrophobic interaction chromatography also made it possible to recognize contamination of lipoteichoic acid with its deacylated and lyso-form, and to discriminate molecular species containing two and three, or two and four acyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号