首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with (75)Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation. These flies were, however, more susceptible to starvation than controls, and this effect could be ascribed to the function of selenoprotein K. We further expressed mouse methionine sulfoxide reductase B1 (MsrB1), a selenoenzyme that catalyzes the reduction of oxidized methionine residues and has protein repair function, in the whole body or the nervous system of fruit flies. This exogenous selenoprotein could only be expressed when the Drosophila selenocysteine insertion sequence element was used, whereas the corresponding mouse element did not support selenoprotein synthesis. Ectopic expression of MsrB1 in the nervous system led to an increase in the resistance against oxidative stress and starvation, but did not affect lifespan and reproduction, whereas ubiquitous MsrB1 expression had no effect. Dietary selenium did not influence lifespan of MsrB1-expressing flies. Thus, in contrast to vertebrates, fruit flies preserve only three selenoproteins, which are not essential and play a role only under certain stress conditions, thereby limiting the use of the micronutrient selenium by these organisms.  相似文献   

2.
A novel eukaryotic selenoprotein in the haptophyte alga Emiliania huxleyi   总被引:1,自引:0,他引:1  
The diversity of selenoproteins raises the question of why many life forms require selenium. Especially in photosynthetic organisms, the biochemical basis for the requirement for selenium is unclear because there is little information on selenoproteins. We found six selenium-containing proteins in a haptophyte alga, Emiliania huxleyi, which requires selenium for growth. The 27-kDa protein EhSEP2 was isolated, and its cDNA was cloned. The deduced amino acid sequence revealed that EhSEP2 is homologous to protein disulfide isomerase (PDI) and contains a highly conserved thioredoxin domain. The nucleotide sequence contains an in-frame TGA codon encoding selenocysteine at the position corresponding to the cysteine residue in the reaction center of known PDIs. However, no typical selenocysteine insertion sequence was found in the EhSEP2 cDNA. The EhSEP2 mRNA level was related to the abundance of selenium. E. huxleyi possesses a novel PDI-like selenoprotein and may have a novel type of selenocysteine insertion machinery.  相似文献   

3.
Known eukaryotic selenocysteine (Sec)-containing proteins are animal proteins, whereas selenoproteins have not been found in yeast and plants. Surprisingly, we detected selenoproteins in a member of the plant kingdom, Chlamydomonas reinhardtii, and directly identified two of them as phospholipid hydroperoxide glutathione peroxidase and selenoprotein W homologs. Moreover, a selenocysteyl-tRNA was isolated that recognized specifically the Sec codon UGA. Subsequent gene cloning and bioinformatics analyses identified eight additional selenoproteins, including methionine-S-sulfoxide reductase, a selenoprotein specific to Chlamydomonas: Chlamydomonas selenoprotein genes contained selenocysteine insertion sequence (SECIS) elements that were similar, but not identical, to those of animals. These SECIS elements could direct selenoprotein synthesis in mammalian cells, indicating a common origin of plant and animal Sec insertion systems. We found that selenium is required for optimal growth of Chlamydomonas: Finally, evolutionary analyses suggested that selenoproteins present in Chlamydomonas and animals evolved early, and were independently lost in land plants, yeast and some animals.  相似文献   

4.
Selenoprotein P is a plasma protein recently purified and characterized as containing 7.5 +/- 1.0 selenium atoms/molecule as selenocysteine. In rats maintained on a defined diet containing nutritionally adequate amounts of selenate as the sole selenium source, over half the selenium in plasma is accounted for by selenoprotein P. Its cDNA has been cloned from a rat liver library and sequenced. The sequence is highly unusual, containing 10 TGA codons in its open reading frame prior to the TAA termination codon. TGA designates selenocysteine in other selenoproteins, and limited peptide sequencing that included the amino acids encoded by two of the TGA codons verified that they correspond to selenocysteine. The deduced 366-amino acid sequence is histidine- and cysteine-rich and contains 9 of its selenocysteines in the terminal 122 amino acids. Comparison of the deduced amino acid sequence of selenoprotein P with those of other selenoprotein reveals no significant similarities. Selenoprotein P represents a new class of selenoproteins and is the first protein described with more than 1 selenocysteine in a single polypeptide chain. The primary structure of selenoprotein P suggests that it might be responsible for some of the antioxidant properties of selenium.  相似文献   

5.
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.  相似文献   

6.
Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec). Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp) ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14) expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development.  相似文献   

7.
8.
Mammalian selenium-containing proteins identified thus far contain selenium in the form of a selenocysteine residue encoded by UGA. These proteins lack common amino acid sequence motifs, but 3'-untranslated regions of selenoprotein genes contain a common stem-loop structure, selenocysteine insertion sequence (SECIS) element, that is necessary for decoding UGA as selenocysteine rather than a stop signal. We describe here a computer program, SECISearch, that identifies mammalian selenoprotein genes by recognizing SECIS elements on the basis of their primary and secondary structures and free energy requirements. When SECISearch was applied to search human dbEST, two new mammalian selenoproteins, designated SelT and SelR, were identified. We determined their cDNA sequences and expressed them in a monkey cell line as fusion proteins with a green fluorescent protein. Incorporation of selenium into new proteins was confirmed by metabolic labeling with (75)Se, and expression of SelT was additionally documented in immunoblot assays. SelT and SelR did not have homology to previously characterized proteins, but their putative homologs were detected in various organisms. SelR homologs were present in every organism characterized by complete genome sequencing. The data suggest applicability of SECISearch for identification of new selenoprotein genes in nucleotide data bases.  相似文献   

9.
10.
11.
In eukaryotes, the decoding of the UGA codon as selenocysteine (Sec) requires a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. We purified a SECIS binding protein, SBP2, and obtained a cDNA clone that encodes this activity. SBP2 is a novel protein containing a putative RNA binding domain found in ribosomal proteins and a yeast suppressor of translation termination. By UV cross-linking and immunoprecipitation, we show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in vivo. Using (75)Se-labeled Sec-tRNA(Sec), we developed an in vitro system for analyzing Sec incorporation in which the translation of a selenoprotein mRNA was both SBP2 and SECIS element dependent. Immunodepletion of SBP2 from the lysates abolished Sec insertion, which was restored when recombinant SBP2 was added to the reaction. These results establish that SBP2 is essential for the co-translational insertion of Sec into selenoproteins. We hypothesize that the binding activity of SBP2 may be involved in preventing termination at the UGA/Sec codon.  相似文献   

12.
Selenoprotein W gene regulation by selenium in L8 cells   总被引:3,自引:0,他引:3  
Q.P. Gu  W. Ream  P.D. Whanger 《Biometals》2002,15(4):411-420
  相似文献   

13.
Selenium has been implicated in cancer prevention, but the mechanism and possible involvement of selenoproteins in this process are not understood. To elucidate whether the 15-kDa selenoprotein may play a role in cancer etiology, the complete sequence of the human 15-kDa protein gene was determined, and various characteristics associated with expression of the protein were examined in normal and malignant cells and tissues. The 51-kilobase pair gene for the 15-kDa selenoprotein consisted of five exons and four introns and was localized on chromosome 1p31, a genetic locus commonly mutated or deleted in human cancers. Two stem-loop structures resembling selenocysteine insertion sequence elements were identified in the 3'-untranslated region of the gene, and only one of these was functional. Two alleles in the human 15-kDa protein gene were identified that differed by two single nucleotide polymorphic sites that occurred within the selenocysteine insertion sequence-like structures. These 3'-untranslated region polymorphisms resulted in changes in selenocysteine incorporation into protein and responded differently to selenium supplementation. Human and mouse 15-kDa selenoprotein genes manifested the highest level of expression in prostate, liver, kidney, testis, and brain, and the level of the selenoprotein was reduced substantially in a malignant prostate cell line and in hepatocarcinoma. The expression pattern of the 15-kDa protein in normal and malignant tissues, the occurrence of polymorphisms associated with protein expression, the role of selenium in differential regulation of polymorphisms, and the chromosomal location of the gene may be relevant to a role of this protein in cancer.  相似文献   

14.
Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3'-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins.  相似文献   

15.
Several gene products are involved in co-translational insertion of selenocysteine by the tRNA(Sec). In addition, a stem-loop structure in the mRNAs coding for selenoproteins is essential to mediate the selection of the proper selenocysteine UGA codon. Interestingly, in eukaryotic selenoprotein mRNAs, this stem-loop structure, the selenocysteine insertion sequence (SECIS) element, resides in the 3'-untranslated region, far downstream of the UGA codon. In view of unravelling the underlying complex mechanism, we have attempted to detect RNA-binding proteins with specificity for the SECIS element. Using mobility shift assays, we could show that a protein, present in different types of mammalian cell extracts, possesses the capacity of binding the SECIS element of the selenoprotein glutathione peroxidase (GPx) mRNA. We have termed this protein SBP, for Secis Binding Protein. Competition experiments attested that the binding is highly specific and UV cross-linking indicated that the protein has an apparent molecular weight in the range of 60-65 kDa. Finally, some data suggest that the SECIS elements in the mRNAs of GPx and another selenoprotein, type I iodothyronine 5' deiodinase, recognize the same SBP protein. This constitutes the first report of the existence of a 3' UTR binding protein possibly involved in the eukaryotic selenocysteine insertion mechanism.  相似文献   

16.
A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium is biologically active through the functions of selenoproteins that contain the amino acid selenocysteine. This amino acid is translated in response to in-frame UGA codons in mRNAs that include a SECIS element in its 3' untranslated region, and this process requires a unique tRNA, referred to as tRNA([Ser]Sec). The translation of UGA as selenocysteine, rather than its use as a termination signal, is a candidate restriction point for the regulation of selenoprotein synthesis by selenium. A specialized reporter construct was used that permits the evaluation of SECIS-directed UGA translation to examine mechanisms of the regulation of selenoprotein translation. Using SECIS elements from five different selenoprotein mRNAs, UGA translation was quantified in response to selenium supplementation and alterations in tRNA([Ser]Sec) levels and isoform distributions. Although each of the evaluated SECIS elements exhibited differences in their baseline activities, each was stimulated to a similar extent by increased selenium or tRNA([Ser]Sec) levels and was inhibited by diminished levels of the methylated isoform of tRNA([Ser]Sec) achieved using a dominant-negative acting mutant tRNA([Ser]Sec). tRNA([Ser]Sec) was found to be limiting for UGA translation under conditions of high selenoprotein mRNA in both a transient reporter assay and in cells with elevated GPx-1 mRNA. This and data indicating increased amounts of the methylated isoform of tRNA([Ser]Sec) during selenoprotein translation indicate that it is this isoform that is translationally active and that selenium-induced tRNA methylation is a mechanism of regulation of the synthesis of selenoproteins.  相似文献   

17.
In selenoproteins, incorporation of the amino acid selenocysteine is specified by the UGA codon, usually a stop signal. The alternative decoding of UGA is conferred by an mRNA structure, the SECIS element, located in the 3′-untranslated region of the selenoprotein mRNA. Because of the non-standard use of the UGA codon, current computational gene prediction methods are unable to identify selenoproteins in the sequence of the eukaryotic genomes. Here we describe a method to predict selenoproteins in genomic sequences, which relies on the prediction of SECIS elements in coordination with the prediction of genes in which the strong codon bias characteristic of protein coding regions extends beyond a TGA codon interrupting the open reading frame. We applied the method to the Drosophila melanogaster genome, and predicted four potential selenoprotein genes. One of them belongs to a known family of selenoproteins, and we have tested experimentally two other predictions with positive results. Finally, we have characterized the expression pattern of these two novel selenoprotein genes.  相似文献   

18.
Selenocysteine is incorporated into selenoproteins by an in-frame UGA codon whose readthrough requires the selenocysteine insertion sequence (SECIS), a conserved hairpin in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. To identify new selenoproteins, we developed a strategy that obviates the need for prior amino acid sequence information. A computational screen was used to scan nucleotide sequence data bases for sequences presenting a potential SECIS secondary structure. The computer-selected hairpins were then assayed in vivo for their functional capacities, and the cDNAs corresponding to the SECIS winners were identified. Four of them encoded novel selenoproteins as confirmed by in vivo experiments. Among these, SelZf1 and SelZf2 share a common domain with mitochondrial thioredoxin reductase-2. The three proteins, however, possess distinct N-terminal domains. We found that another protein, SelX, displays sequence similarity to a protein involved in bacterial pilus formation. For the first time, four novel selenoproteins were discovered based on a computational screen for the RNA hairpin directing selenocysteine incorporation.  相似文献   

19.
The discovery of two atypical amino acids, selenocysteine and pyrrolysine, in the genetic code is discussed. These findings have expanded our understanding of the genetic code, since the repertoire of amino acids in the genetic code was supplemented by two novel ones, in addition of the standard 20 amino acids. Current views on specific mechanisms of selenocysteine insertion in forming selenoproteins are considered, as well as the results of studies of new translational components involved in biosynthesis and incorporation of selenocysteine at different stages of translation. Similarity in the strategies of decoding UGA and UAG as codons for respectively selenocysteine and pyrrolysine is discussed. The review also presents evidence on the medical and biological role of selenium and selenoproteins containing selenocysteine as the main biological form of selenium.  相似文献   

20.
Selenoprotein synthesis in archaea   总被引:9,自引:0,他引:9  
The availability of the genome sequences from several archaea has facilitated the identification of the encoded selenoproteins and also of most of the components of the machinery for selenocysteine biosynthesis and insertion. Until now, selenoproteins have been identified solely in species of the genera Methanococcus (M.) and Methanopyrus. Apart from selenophosphate synthetase, they include only enzymes with a function in energy metabolism. Like in bacteria and eukarya, selenocysteine insertion is directed by a UGA codon in the mRNA and involves the action of a specific tRNA and of selenophosphate as the selenium donor. Major differences to the bacterial system, however, are that no homolog for the bacterial selenocysteine synthase was found and, especially, that the SECIS element of the mRNA is positioned in the 3' nontranslated region. The characterisation of a homolog for the bacterial SelB protein showed that it does not bind to the SECIS element necessitating the activity of at least a second protein. The use of the genetic system of M. maripaludis allowed the heterologous expression of a selenoprotein gene from M. jannaschii and will facilitate the elucidation of the mechanism of the selenocysteine insertion process in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号