首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bhuyan AK  Kumar R 《Biochemistry》2002,41(42):12821-12834
To determine the kinetic barrier in the folding of horse cytochrome c, a CO-liganded derivative of cytochrome c, called carbonmonoxycytochrome c, has been prepared by exploiting the thermodynamic reversibility of ferrocytochrome c unfolding induced by guanidinium hydrochloride (GdnHCl), pH 7. The CO binding properties of unfolded ferrocytochrome c, studied by 13C NMR and optical spectroscopy, are remarkably similar to those of native myoglobin and isolated chains of human hemoglobin. Equilibrium unfolding transitions of ferrocytochrome c in the presence and the absence of CO observed by both excitation energy transfer from the lone tryptophan to the ferrous heme and far-UV circular dichroism (CD) indicate no accumulation of structural intermediates to a detectable level. Values of thermodynamic parameters obtained by two-state analysis of fluorescence transitions are DeltaG(H2O) = 11.65(+/-1.13) kcal x mol(-1) and C(m) = 3.9(+/-0.1) M GdnHCl in the presence of CO, and DeltaG(H2O)=19.3(+/-0.5) kcal x mol(-1) and C(m) = 5.1(+/-0.1) M GdnHCl in the absence of CO, indicating destabilization of ferrocytochrome c by approximately 7.65 kcal x mol(-1) due to CO binding. The native states of ferrocytochrome c and carbonmonoxycytochrome c are nearly identical in terms of structure and conformation except for the Fe2+-M80 --> Fe2+-CO replacement. Folding and unfolding kinetics as a function of GdnHCl, studied by stopped-flow fluorescence, are significantly different for the two proteins. Both refold fast, but carbonmonoxycytochrome c refolds 2-fold faster (tau = 1092 micros at 10 degrees C) than ferrocytochrome c. Linear extrapolation of the folding rates to the ordinate of the chevron plot projects this value of tau to 407 micros. The unfolding rate of the former in water, estimated by extrapolation, is faster by more than 10 orders of magnitude. Significant differences are also observed in rate-denaturant gradients in the chevron. Formation and disruption of the Fe2+-M80 coordination contact clearly impose high-energy kinetic barriers to folding and unfolding of ferrocytochrome c. The unfolding barrier due to the Fe2+-M80 bond provides sufficient kinetic stability to the native state of ferrocytochrome c to perform its physiological function as an electron donor.  相似文献   

2.
Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0', the binding constant of cyanide to the reduced protein was estimated to be 4.7 x 10(-3) L M(-1) or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 J mol(-1) K(-1) (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed.  相似文献   

3.
Rao DK  Kumar R  Yadaiah M  Bhuyan AK 《Biochemistry》2006,45(10):3412-3420
This paper describes the structural and dynamic properties of a hitherto uncovered alkali molten globule (MG) state of horse "ferrocytochrome c" (ferrocyt c). Several experimental difficulties mainly because of heme autoxidation and extraordinary stability of ferrocyt c have been overcome by working with the carbonmonoxide-bound molecule under extremely basic condition (pH 13) in a strictly anaerobic atmosphere. Structural and molecular properties extracted from basic spectroscopic experiments suggest that cations drive the base-denatured CO-liganded protein to the MG state. The stability of this state is approximately 5.2 kcal mol(-)(1), and the guanidinium-induced unfolding transition is sharp (m(g) approximately 2.3 kcal mol(-)(1) M(-)(1)), suggesting contents of rigid tertiary structure. Strategic experiments involving the measurement of the CO association rate to the base-denatured protein and intrachain diffusion rates measured by laser photolysis of CO indicate a substantially restricted overall motion and stiffness of the polypeptide chain in the MG state. Possible placement of the state in the folding coordinate of ferrocyt c is discussed.  相似文献   

4.
Protein stabilization by urea and guanidine hydrochloride   总被引:7,自引:0,他引:7  
Bhuyan AK 《Biochemistry》2002,41(45):13386-13394
The urea, guanidine hydrochloride, salt, and temperature dependence of the rate of dissociation of CO from a nonequilibrium state of CO-bound native ferrocytochrome c has been studied at pH 7. The heme iron of ferrocytochrome c in the presence of denaturing concentrations of guanidine hydrochloride (GdnHCl) and urea prepared in 0.1 M phosphate, pH 7, binds CO. When the unfolded protein solution is diluted 101-fold into CO-free folding buffer, the protein chain refolds completely, leaving the CO molecule bonded to the heme iron. Subsequently, slow thermal dissociation of the CO molecule yields to the heme coordination of the native M80 ligand. Thus, the reaction monitors the rate of thermal conversion of the CO-liganded native ferrocytochrome c to the M80-liganded native protein. The rate of this reaction, k(diss), shows a characteristic dependence on the presence of nondenaturing concentrations of the denaturants in the reaction medium. The rate decreases by approximately 1.9-3-fold as the concentration of GdnHCl in the refolding medium increases from nearly 0 to approximately 2.1 M. Similarly, the rate decreases by 1.8-fold as the urea concentration is raised from 0.l to approximately 5 M. At still higher concentrations of the denaturants the denaturing effect sets in, the protein is destabilized, and hence the CO dissociation rate increases sharply. The activation energy of the reaction, E(a), increases when the denaturant concentration in the reaction medium is raised: from 24.1 to 28.3 kcal mol(-1) for a 0.05-2.1 M rise in GdnHCl and from 25.2 to 26.9 kcal mol(-1) for a 0.1-26.9 M increase in urea. Corresponding to these increases in denaturant concentrations are also increases in the activation entropy, S(diss)/R, where R is the gas constant of the reaction. The denaturant dependence of these kinetic and thermodynamic parameters of the CO dissociation reaction suggests that binding interactions with GdnHCl and urea can increase the structural and energetic stability of ferrocytochrome c up to the limit of the subdenaturing concentrations of the additives. NaCl and Na(2)SO(4), which stabilize proteins through their salting-in effect, also decrease the rate with a corresponding increase in activation entropy of CO dissociation from CO-bound native ferrocytochrome c, lending support to the view that low concentrations of GdnHCl and urea stabilize proteins. These results have direct relevance to the understanding and interpretation of the free energy-denaturant relationship and protein folding chevrons.  相似文献   

5.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   

6.
7.
We have investigated the structure, equilibria, and folding kinetics of an engineered 35-residue subdomain of the chicken villin headpiece, an ultrafast-folding protein. Substitution of two buried lysine residues by norleucine residues stabilizes the protein by 1 kcal/mol and increases the folding rate sixfold, as measured by nanosecond laser T-jump. The folding rate at 300 K is (0.7 micros)(-1) with little or no temperature dependence, making this protein the first sub-microsecond folder, with a rate only twofold slower than the theoretically predicted speed limit. Using the 70 ns process to obtain the effective diffusion coefficient, the free energy barrier height is estimated from Kramers theory to be less than approximately 1 kcal/mol. X-ray crystallographic determination at 1A resolution shows no significant change in structure compared to the single-norleucine-substituted molecule and suggests that the increased stability is electrostatic in origin. The ultrafast folding rate, very accurate X-ray structure, and small size make this engineered villin subdomain an ideal system for simulation by atomistic molecular dynamics with explicit solvent.  相似文献   

8.
S K Silverman  T R Cech 《Biochemistry》1999,38(27):8691-8702
Tertiary interactions that allow RNA to fold into intricate three-dimensional structures are being identified, but little is known about the thermodynamics of individual interactions. Here we quantify the tertiary structure contributions of individual hydrogen bonds in a "ribose zipper" motif of the recently crystallized Tetrahymena group I intron P4-P6 domain. The 2'-hydroxyls of P4-P6 nucleotides C109/A184 and A183/G110 participate in forming the "teeth" of the zipper. These four nucleotides were substituted in all combinations with their 2'-deoxy and (separately) 2'-methoxy analogues, and thermodynamic effects on the tertiary folding DeltaG degrees ' were assayed by the Mg2+ dependence of electrophoretic mobility in nondenaturing gels. The 2'-deoxy series showed a consistent trend with an average contribution to the tertiary folding DeltaG degrees' of -0.4 to -0.5 kcal/mol per hydrogen bond. Contributions were approximately additive, reflecting no cooperativity among the hydrogen bonds. Each "tooth" of the ribose zipper (comprising two hydrogen bonds) thus contributes about -1.0 kcal/mol to the tertiary folding DeltaG degrees'. Single 2'-methoxy substitutions destabilized folding by approximately 1 kcal/mol, but the trend reversed with multiple 2'-methoxy substitutions; the folding DeltaG degrees' for the quadruple 2'-methoxy derivative was approximately unchanged relative to wild-type. On the basis of these data and on temperature-gradient gel results, we conclude that entropically favorable hydrophobic interactions balance enthalpically unfavorable hydrogen bond deletions and steric clashes for multiple 2'-methoxy substitutions. Because many of the 2'-deoxy derivatives no longer have the characteristic hydrogen-bond patterns of the ribose zipper motif but simply have individual long-range ribose-base or ribose-ribose hydrogen bonds, we speculate that the energetic value of -0.4 to -0.5 kcal/mol per tertiary hydrogen bond may be more generally applicable to RNA folding.  相似文献   

9.
The tetramerization of melittin, a 26-amino acid peptide from Apis mellifera bee venom, has been studied as a model for protein folding. Melittin converts from a monomeric random coil to an alpha-helical tetramer as the pH is raised from 4.0 to 9.5, as ionic strength is increased, as temperature is raised or lowered from about 37 degrees C, or as phosphate is added. The thermodynamics of this tetramerization (termed "folding") are explored using circular dichroism. The melittin tetramer has two pKa values of 7.5 and 8.5 corresponding to protonation of the N-terminus and Lys 23, respectively. pKa values calculated with the program DelPhi (Gilson, M.K., Sharp, K.A., & Honig, B.H., 1987, J. Comp. Chem. 9, 327-335; Gilson, M.K. & Honig, B.H., 1988a, Proteins 3, 32-52; Gilson, M.K. & Honig, B.H., 1988b, Proteins 4, 7-18) agree with experimental titration data. Greater electrostatic repulsion of these protonated groups destabilizes the tetramer by 3.6 kcal/mol at pH 4.0 compared to pH 9.5. Increasing the concentration of NaCl in the solution from 0 to 0.5 M stabilizes the tetramer by 5-6 kcal/mol at pH 4.0. The effect of NaCl is modeled with a ligand-binding approach. The melittin tetramer is found to have a temperature of maximum stability ranging from 35.5 to 43 degrees C depending on the pH, unfolding above and below that temperature. delta Cp0 for folding ranges from -0.085 to -0.102 cal g-1 K-1, comparable to that of other small globular proteins (Privalov, P.L., 1979, Adv. Protein Chem. 33, 167-241). delta H0 and delta S0 are found to decrease with temperature, presumably due to the hydrophobic effect (Kauzmann, W., 1959, Adv. Protein Chem. 14, 1-63). Phosphate is found to perturb the equilibrium substantially with a maximal effect at 150 mM, stabilizing the tetramer at pH 7.4 and 25 degrees C by 4.6 kcal/mol. The enthalpy change due to addition of phosphate (-7.5 kcal/mol at 25 degrees C) can be accounted for by simple dielectric screening. Both circular dichroism and crystallographic results suggest that phosphate may bind Lys 23 at the ends of the elongated tetramer. These detailed measurements give insight into the relative importance of various forces for the stability of melittin in the folded form and may provide an experimental standard for future tests of computational energetics on this simple protein system.  相似文献   

10.
The folding mechanism of cellular retinoic acid binding protein I (CRABP I), cellular retinol binding protein II (CRBP II), and intestinal fatty acid binding protein (IFABP) were investigated to determine if proteins with similar native structures have similar folding mechanisms. These mostly β-sheet proteins have very similar structures, despite having as little as 33% sequence similarity. The reversible urea denaturation of these proteins was characterized at equilibrium by circular dichroism and fluorescence. The data were best fit by a two-state model for each of these proteins, suggesting that no significant population of folding intermediates were present at equilibrium. The native states were of similar stability with free energies (linearly extrapolated to 0 M urea, ΔG) of 6.5, 8.3, and 5.5 kcal/mole for CRABP I, CRBP II, and IFABP, respectively. The kinetics of the folding and unfolding processes for these proteins was monitored by stopped-flow CD and fluorescence. Intermediates were observed during both the folding and unfolding of all of these proteins. However, the overall rates of folding and unfolding differed by nearly three orders of magnitude. Further, the spectroscopic properties of the intermediate states were different for each protein, suggesting that different amounts of secondary and/or tertiary structure were associated with each intermediate state for each protein. These data show that the folding path for proteins in the same structural family can be quite different, and provide evidence for different folding landscapes for these sequences. Proteins 33:107–118, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
The possible contributions of the mechanochemical triggering effect to the enzymatic activation of the carbon-cobalt bond of coenzyme B12 (5'-deoxyadenosylcobalamin, AdoCbl) for homolytic cleavage have been studied by molecular modeling and semiempirical molecular orbital calculations. Classically, this effect has envisioned enzymatic compression of the axial Co-N bond in the ground state to cause upward folding of the corrin ring and subsequent sterically induced distortion of the Co-C bond leading to its destabilization. The models of this process show that in both methylcobalamin (CH3Cbl) and AdoCbl, compression of the axial Co-N bond does engender upward folding of the corrin ring, and that the extent of such upward folding is smaller in an analog in which the normal 5,6-dimethylbenzimidazole axial ligand is replaced by the sterically smaller ligand, imidazole (CH3(lm)Cbl and Ado(lm)Cbl). Furthermore, in AdoCbl, this upward folding of the corrin is accompanied by increases in the carbon-cobalt bond length and in the Co-C-C bond angle (which are also less pronounced in Ado(Im)Cbl), and which indicate that the Co-C bond is indeed destabilized by this mechanism. However, these effects on the Co-C bond are small, and destabilization of this bond by this mechanism is unlikely to contribute more than ca. 3 kcal mol(-1) towards the enzymatic catalysis of Co-C bond homolysis, far short of the observed ca. 14 kcal mol(-1). A second version of mechanochemical triggering, in which compression of the axial Co-N bond in the transition state for Co-C bond homolysis stabilizes the transition state by increased Co-N orbital overlap, has also been investigated. Stretching the Co-C bond to simulate the approach to the transition state was found to result in an upward folding of the corrin ring, a slight decrease in the axial Co-N bond length, a slight displacement of the metal atom from the plane of the equatorial nitrogens towards the "lower" axial ligand, and a decrease in strain energy amounting to about 8 kcal mol(-1) for both AdoCbl and Ado(Im)Cbl. In such modeled transition states, compression of the axial Co-N bond to just below 2.0 A (the distance subsequently found to provide maximal stabilization of the transition state by increased orbital overlap) required about 4 kcal mol(-1) for AdoCbl, and about 2.5 kcal mol(-1) for Ado(Im)Cbl. ZINDO/1 calculations on slightly simplified structures showed that maximal electronic stabilization of the transition state by about 10 kcal mol(-1) occurred at an axial Co-N bond distance of 1.96 A for both AdoCbl and Ado(Im)Cbl. The net result is that this type of transition state mechanochemical triggering can provide 14 kcal mol(-1) of transition state stabilization for AdoCbl, and about 15.5 kcal mol(-1) for the Ado(Im)Cbl, enough to completely explain the observed enzymatic catalysis. These results are discussed in the light of current knowledge about class I AdoCbl-dependent enzymes, in which the coenzyme is bound in its "base-off" conformation, with the lower axial ligand position occupied by the imidazole moiety of an active site histidine residue, and the class II enzymes, in which AdoCbl binds to the enzyme in its "base-on" conformation, and the pendent 5,6-dimethylbenzimidazole base remains coordinated to the metal during Co-C bond activation.  相似文献   

12.
The oxidative folding pathway of leech carboxypeptidase inhibitor (LCI; four disulfide bonds) proceeds through the formation of two major intermediates (III-A and III-B) that contain three native disulfide bonds and act as strong kinetic traps in the folding process. The III-B intermediate lacks the Cys19-Cys43 disulfide bond that links the beta-sheet core with the alpha-helix in wild-type LCI. Here, an analog of this intermediate was constructed by replacing Cys19 and Cys43 with alanine residues. Its oxidative folding follows a rapid sequential flow through one, two, and three disulfide species to reach the native form; the low accumulation of two disulfide intermediates and three disulfide (scrambled) isomers accounts for a highly efficient reaction. The three-dimensional structure of this analog, alone and in complex with carboxypeptidase A (CPA), was determined by X-ray crystallography at 2.2A resolution. Its overall structure is very similar to that of wild-type LCI, although the residues in the region adjacent to the mutation sites show an increased flexibility, which is strongly reduced upon binding to CPA. The structure of the complex also demonstrates that the analog and the wild-type LCI bind to the enzyme in the same manner, as expected by their inhibitory capabilities, which were similar for all enzymes tested. Equilibrium unfolding experiments showed that this mutant is destabilized by approximately 1.5 kcal mol(-1) (40%) relative to the wild-type protein. Together, the data indicate that the fourth disulfide bond provides LCI with both high stability and structural specificity.  相似文献   

13.
14.
The folding of large, multidomain proteins involves the hierarchical assembly of individual domains. It remains unclear whether the stability and folding of small, single-domain proteins occurs through a comparable assembly of small, autonomous folding units. We have investigated the relationship between two subdomains of the protein T4 lysozyme. Thermodynamically, T4 lysozyme behaves as a cooperative unit and the unfolding transition fits a two-state model. The structure of the protein, however, resembles a dumbbell with two potential subdomains: an N-terminal subdomain (residues 13-75), and a C-terminal subdomain (residues 76-164 and 1-12). To investigate the effect of uncoupling these two subdomains within the context of the native protein, we created two circular permutations, both at the subdomain interface (residues 13 and 75). Both variants adopt an active wild-type T4 lysozyme fold. The protein starting with residue 13 is 3 kcal/mol less stable than wild type, whereas the protein beginning at residue 75 is 9 kcal/mol less stable, suggesting that the placement of the termini has a major effect on protein stability while minimally affecting the fold. When isolated as protein fragments, the C-terminal subdomain folds into a marginally stable helical structure, whereas the N-terminal subdomain is predominantly unfolded. ANS fluorescence studies indicate that, at low pH, the C-terminal subdomain adopts a loosely packed acid state. An acid state intermediate is also seen for all of the full-length variants. We propose that this acid state is comprised of an unfolded N-terminal subdomain and a loosely folded C-terminal subdomain.  相似文献   

15.
FIS, the factor for inversion stimulation, from Escherichia coli and other enteric bacteria, is an interwined alpha-helical homodimer. Size exclusion chromatography and static light scattering measurements demonstrated that FIS is predominately a stable dimer at the concentrations (1-10 microM monomer) and buffer conditions employed in this study. The folding and unfolding of FIS were studied with both equilibrium and kinetic methods by circular dichroism using urea and guanidinium chloride (GdmCl) as the perturbants. The equilibrium folding is reversible and well-described by a two-state folding model, with stabilities at 10 degrees C of 15.2 kcal mol(-1) in urea and 13.5 kcal mol(-1) in GdmCl. The kinetic data are consistent with a two-step folding reaction where the two unfolded monomers associate to a dimeric intermediate within the mixing time for the stopped-flow instrument (<5 ms), and a slower, subsequent folding of the dimeric intermediate to the native dimer. Fits of the burst phase amplitudes as a function of denaturant showed that the free energy for the formation of the dimeric intermediate constitutes the majority of the stability of the folding (9.6 kcal mol(-1) in urea and 10.5 kcal mol(-1) in GdmCl). Folding-to-unfolding double jump kinetic experiments were also performed to monitor the formation of native dimer as a function of folding delay times. The data here demonstrate that the dimeric intermediate is obligatory and on-pathway. The folding mechanism of FIS, when compared to other intertwined, alpha-helical, homodimers, suggests that a transient kinetic dimeric intermediate may be a common feature of the folding of intertwined, segment-swapped, alpha-helical dimers.  相似文献   

16.
The change in heat capacity deltaCp for the folding of ribonuclease A was determined using differential scanning calorimetry and thermal denaturation curves. The methods gave equivalent results, deltaCp = 1.15+/-0.08 kcal mol(-1) K(-1). Estimates of the conformational stability of ribonuclease A based on these results from thermal unfolding are in good agreement with estimates from urea unfolding analyzed using the linear extrapolation method.  相似文献   

17.
The P4-P6 domain serves as a scaffold against which the periphery and catalytic core organize and fold during Mg2+-mediated folding of the Tetrahymena thermophila ribozyme. The most prominent structural motif of the P4-P6 domain is the tetraloop-tetraloop receptor interaction which "clamps" the distal parts of its hairpin-like structure. Destabilization of the tertiary structure of the P4-P6 domain by perturbation of the tetraloop-tetraloop receptor interaction alters the Mg2+-mediated folding pathway. The folding hierarchy of P5c approximately P4-P6 > periphery > catalytic core that is a striking attribute of the folding of the wild-type RNA is abolished. The initial steps in folding of the mutant RNA are > or =50-fold faster than those of the wild-type ribozyme with the earliest observed tertiary contacts forming around regions known to specifically bind Mg2+. The interaction between the mutant tetraloop and the tetraloop receptor appears coincidently with slowly forming catalytic core tertiary contacts. Thus, the stability conferred upon the P4-P6 domain by the tetraloop-tetraloop receptor interaction dictates the preferred folding pathway by stabilizing an early intermediate. A sub-denaturing concentration of urea diminishes the early barrier to folding the wild-type ribozyme along with complex effects on the subsequent steps of folding the wild-type and mutant RNA.  相似文献   

18.
Comparatively little is known about the role of non-native interactions in protein folding and their role in both folding and stability is controversial. We demonstrate that non-native electrostatic interactions involving specific residues in the denatured state can have a significant effect upon protein stability and can persist in the transition state for folding. Mutation of a single surface exposed residue, Lys12 to Met, in the N-terminal domain of the ribosomal protein L9 (NTL9), significantly increased the stability of the protein and led to faster folding. Structural and energetic studies of the wild-type and K12M mutant show that the 1.9 kcal mol(-1) increase in stability is not due to native state effects, but rather is caused by modulation of specific non-native electrostatic interactions in the denatured state. pH dependent stability measurements confirm that the increased stability of the K12M is due to the elimination of favorable non-native interactions in the denatured state. Kinetic studies show that the non-native electrostatic interactions involving K12 persist in the transition state. The analysis demonstrates that canonical Phi-values can arise from the disruption of non-native interactions as well as from the development of native interactions.  相似文献   

19.
The hexapeptide acetyl-Trp-Leu(5) (AcWL(5)) has the remarkable ability to assemble reversibly and spontaneously into beta-sheets on lipid membranes as a result of monomer partitioning followed by cooperative assembly. This system provides a unique opportunity to study the thermodynamics of protein folding in membranes, which we have done using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). The results, which may represent the first example of reversible thermal unfolding of peptides in membranes, help to define the contribution of hydrogen bonding to the extreme thermal stability of membrane proteins. ITC revealed that the enthalpy change for partitioning of monomeric, unstructured AcWL(5) from water into membranes was zero within experimental error over the temperature range of 5 degrees C to 75 degrees C. DSC showed that the beta-sheet aggregates underwent a reversible, endothermic, and very asymmetric thermal transition with a concentration-dependent transition temperature (T(m)) in the range of 60 degrees C to 80 degrees C. A numerical model of nucleation and growth-dependent assembly of oligomeric beta-sheets, proposed earlier to describe beta-sheet formation in membranes, recreated remarkably well the unusual shape and concentration-dependence of the transition peaks. The enthalpy for thermal unfolding of AcWL(5) beta-sheets in the membrane was found to be about 8(+/-1)kcal mol(-1), or about 1.3(+/-0.2)kcal mol(-1) per residue.  相似文献   

20.
A "folding element" is a contiguous peptide segment crucial for a protein to be foldable and is a new concept that could assist in our understanding of the protein-folding problem. It is known that the presence of the complete set of folding elements of dihydrofolate reductase (DHFR) from Escherichia coli is essential for the protein to be foldable. Since almost all of the amino acid residues known to be involved in the early folding events of DHFR are located within the folding elements, a close relationship between the folding elements and early folding events is hypothesized. In order to test this hypothesis, we have investigated whether or not the early folding events are preserved in circular permutants and topological mutants of DHFR, in which the order of the folding elements is changed but the complete set of folding elements is present. The stopped-flow circular dichroism (CD) measurements show that the CD spectra at the early stages of folding are similar among the mutants and the wild-type DHFR, indicating that the presence of the complete set of folding elements is sufficient to preserve the early folding events. We have further examined whether or not sequence perturbation on the folding elements by a single amino acid substitution affects the early folding events of DHFR. The results show that the amino acid substitutions inside of the folding elements can affect the burst-phase CD spectra, whereas the substitutions outside do not. Taken together, these results indicate that the above hypothesis is true, suggesting a close relationship between the foldability of a protein and the early folding events. We propose that the folding elements interact with each other and coalesce to form a productive intermediate(s) early in the folding, and these early folding events are important for a protein to be foldable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号