首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's amyloid beta-protein precursor contains a Kunitz protease inhibitor domain (APPI) potentially involved in proteolytic events leading to cerebral amyloid deposition. To facilitate the identification of the physiological target of the inhibitor, the crystal structure of APPI has been determined and refined to 1.5-A resolution. Sequences in the inhibitor-protease interface of the correct protease target will reflect the molecular details of the APPI structure. While the overall tertiary fold of APPI is very similar to that of the Kunitz inhibitor BPTI, a significant rearrangement occurs in the backbone conformation of one of the two protease binding loops. A number of Kunitz inhibitors have similar loop sequences, indicating the structural alteration is conserved and potentially an important determinant of inhibitor specificity. In a separate region of the protease binding loops, APPI side chains Met-17 and Phe-34 create an exposed hydrophobic surface in place of Arg-17 and Val-34 in BPTI. The restriction this change places on protease target sequences is seen when the structure of APPI is superimposed on BPTI complexed to serine proteases, where the hydrophobic surface of APPI faces a complementary group of nonpolar side chains on kallikrein A versus polar side chains on trypsin.  相似文献   

2.
Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursor protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. These findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.  相似文献   

3.
Bovine pancreatic trypsin was crystallized, in-complex with Lima bean trypsin inhibitor (LBTI) (Phaseolus lunatus L.), in the form of a ternary complex. LBTI is a Bowman–Birk-type bifunctional serine protease inhibitor, which has two independent inhibitory loops. Both of the loops can inhibit trypsin, however, only the hydrophobic loop is specific for inhibiting chymotrypsin. The structure of trypsin incomplex with the LBTI has been solved and refined at 2.25 Å resolution, in the space group P41, with Rwork/Rfree values of 18.1/23.3. The two binding sites of LBTI differ in only two amino acids. Lysine and leucine are the key residues of the two different binding loops positioned at the P1, and involved in binding the S1 binding site of trypsin. The asymmetric unit cell contains two molecules of trypsin and one molecule of LBTI. The key interactions include hydrogen bonds between LBTI and active site residues of trypsin. The 3D structure of the enzyme–inhibitor complex provided details insight into the trypsin inhibition by LBTI. To the best of our knowledge, this is the first report on the structure of trypsin incomplex with LBTI.  相似文献   

4.
Mesotrypsin displays unusual resistance to inhibition by polypeptide trypsin inhibitors and cleaves some such inhibitors as substrates, despite a high degree of conservation with other mammalian trypsins. Substitution of Arg for the generally conserved Gly-193 has been implicated as a critical determinant of the unusual behavior of mesotrypsin toward protein protease inhibitors. Another relatively conserved residue near the trypsin active site, Tyr-39, is substituted by Ser-39 in mesotrypsin. Tyr-39, but not Ser-39, forms a hydrogen bond with the main chain amide nitrogen of the P4′ residue of a bound protease inhibitor. To investigate the role of the Tyr-39 H-bond in trypsin-inhibitor interactions, we reciprocally mutated position 39 in mesotrypsin and human cationic trypsin to Tyr-39 and Ser-39, respectively. We assessed inhibition constants and cleavage rates of canonical protease inhibitors bovine pancreatic trypsin inhibitor (BPTI) and the amyloid precursor protein Kunitz protease inhibitor domain by mesotrypsin and cationic trypsin variants, finding that the presence of Ser-39 relative to Tyr-39 results in a 4- to 13-fold poorer binding affinity and a 2- to 18-fold increase in cleavage rate. We also report the crystal structure of the mesotrypsin-S39Y•BPTI complex, in which we observe an H-bond between Tyr-39 OH and BPTI Ile-19 N. Our results indicate that the presence of Ser-39 in mesotrypsin, and corresponding absence of a single H-bond to the inhibitor backbone, makes a small but significant functional contribution to the resistance of mesotrypsin to inhibition and the ability of mesotrypsin to proteolyze inhibitors.  相似文献   

5.
Severe neurodegradative brain diseases, like Alzheimer, are tightly linked with proteolytic activity in the human brain. Proteinases expressed in the brain, such as human trypsin IV, are likely to be involved in the pathomechanism of these diseases. The observation of amyloid formed in the brain of transgenic mice expressing human trypsin IV supports this hypothesis. Human trypsin IV is also resistant towards all studied naturally occurring polypeptide inhibitors. It has been postulated that the substitution of Gly193 to arginine is responsible for this inhibitor resistance. Here we report the X-ray structure of human trypsin IV in complex with the inhibitor benzamidine at 1.7 A resolution. The overall fold of human trypsin IV is similar to human trypsin I, with a root-mean square deviation of only 0.5 A for all C(alpha) positions. The crystal structure reveals the orientation of the side-chain of Arg193, which occupies an extended conformation and fills the S2' subsite. An analysis of surface electrostatic potentials shows an unusually strong clustering of positive charges around the primary specificity pocket, to which the side-chain of Arg193 also contributes. These unique features of the crystal structure provide a structural basis for the enhanced inhibitor resistance, and enhanced substrate restriction, of human trypsin IV.  相似文献   

6.
The three-dimensional structure of the proteic complex formed by bovine trypsinogen and the porcine pancreatic secretory trypsin inhibitor (Kazal type) has been solved by means of Patterson search techniques, using a predicted model of the trypsin-ovomucoid complex (Papamokos et al., 1982). The structure of the complex, including 162 solvent molecules, has been refined at 1.8 Å resolution (26,341 unique reflections) to a conventional crystallographic R factor of 0.195. The inhibitor molecule binds to trypsinogen via hydrogen bonds and/or apolar interactions at sites P9, P7, P6, P5, P3, P1, P1′, P2′ and P3′ of the contact area. The structure of the inhibitor itself resembles closely that of the third domain of Japanese quail ovomucoid inhibitor, recently reported by Weber et al. (1981). The trypsinogen part of the complex resembles trypsin, as is the case in the trypsinogen-basic pancreatic trypsin inhibitor complex, but two segments of the activation domain adopt a different conformation. Most notably in the N-terminal region the Ile16-Gly19 loop, which is disordered in free trypsinogen and in the trypsinogen-basic pancreatic trypsin inhibitor complex (Huber & Bode, 1978), assumes a regular structure and the polypeptide chain can be traced as far as residue Asp14. This new and fixed structure allows the formation of a buried salt link between the side-chains of Lys156 and Asp194. Conformations differing from those of trypsin are also found for residues 20 to 28 and residues 141 to 155. Some structural perturbation is observed in other parts of the molecule, including the calcium loop.  相似文献   

7.
The amyloid beta peptide (A beta P) is the major constituent of the amyloid deposits that accumulate extracellularly in the brain of patients with Alzheimer's disease. This peptide is obtained from transmembrane amyloid protein precursors (APP) which sometimes contain a Kunitz protease inhibitor (KPI) insert in their extracellular domain and therefore are able to inhibit serine proteases. Expression of the transmembrane and the secreted APP containing the KPI domain was obtained by transient transfection of COS-1 cells. The overexpressed proteins were detected in immunoblotting experiments and inhibition of trypsin was analyzed using reverse enzymography. Our results indicate that post-translational modifications including glycosylation improve the inhibition of trypsin by the APP containing the KPI domain.  相似文献   

8.
We have previously shown that a trypsin inhibitor from desert locust Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits arthropod trypsins, such as crayfish trypsin, five orders of magnitude more effectively than mammalian trypsins. Thermal denaturation experiments, presented here, confirm the inhibition kinetics studies; upon addition of SGTI the melting temperatures of crayfish and bovine trypsins increased 27 degrees C and 4.5 degrees C, respectively. To explore the structural features responsible for this taxon specificity we crystallized natural crayfish trypsin in complex with chemically synthesized SGTI. This is the first X-ray structure of an arthropod trypsin and also the highest resolution (1.2A) structure of a trypsin-protein inhibitor complex reported so far. Structural data show that in addition to the primary binding loop, residues P3-P3' of SGTI, the interactions between SGTI and the crayfish enzyme are also extended over the P12-P4 and P4'-P5' regions. This is partly due to a structural change of region P10-P4 in the SGTI structure induced by binding of the inhibitor to crayfish trypsin. The comparison of SGTI-crayfish trypsin and SGTI-bovine trypsin complexes by structure-based calculations revealed a significant interaction energy surplus for the SGTI-crayfish trypsin complex distributed over the entire binding region. The new regions that account for stronger and more specific binding of SGTI to crayfish than to bovine trypsin offer new inhibitor sites to engineer in order to develop efficient and specific protease inhibitors for practical use.  相似文献   

9.
Potato proteinase inhibitor II (PI2) is a serine proteinase inhibitor composed of two domains that are thought to bind independently to proteinases. To determine the activities of each domain separately, various inactive and active domain combinations were constructed by substituting amino acid residues in the active domains by alanines. These derivatives were expressed as soluble protein inEscherichia coli and exposed on M13 phage as fusions to gene 3 in a phagemid system for monovalent phage display. Inactivation of both active domains by Ala residues reduced binding of phage to trypsin and chymotrypsin by 95%. Ten times more phage were bound to proteinases by domain II compared to domain I, while a point mutation (Leu5 Arg) altered the binding specificity of domain I of PI2 phage from chymotrypsin to trypsin. The mutants were used to show that functional PI2 phage mixed with nonfunctional PI2 phage could be enriched 323 000-fold after three rounds of panning. Thus, these results open up the possibility to use phage display for the selection of engineered PI2 derivatives with improved binding characteristics towards digestive proteinases of plants pests.The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number L37519 (p303.51).  相似文献   

10.
The bovine chymotrypsin-bovine pancreatic trypsin inhibitor (BPTI) interaction belongs to extensively studied models of protein-protein recognition. The accommodation of the inhibitor P1 residue in the S1 binding site of the enzyme forms the hot spot of this interaction. Mutations introduced at the P1 position of BPTI result in a more than five orders of magnitude difference of the association constant values with the protease. To elucidate the structural aspects of the discrimination between different P1 residues, crystal structures of five bovine chymotrypsin-P1 BPTI variant complexes have been determined at pH 7.8 to a resolution below 2 A. The set includes polar (Thr), ionizable (Glu, His), medium-sized aliphatic (Met) and large aromatic (Trp) P1 residues and complements our earlier studies of the interaction of different P1 side-chains with the S1 pocket of chymotrypsin. The structures have been compared to the complexes of proteases with similar and dissimilar P1 preferences, including Streptomyces griseus proteases B and E, human neutrophil elastase, crab collagenase, bovine trypsin and human thrombin. The S1 sites of these enzymes share a common general shape of significant rigidity. Large and branched P1 residues adapt in their complexes similar conformations regardless of the polarity and size differences between their S1 pockets. Conversely, long and flexible residues such as P1 Met are present in the disordered form and display a conformational diversity despite similar inhibitory properties with respect to most enzymes studied. Thus, the S1 specificity profiles of the serine proteases appear to result from the precise complementarity of the P1-S1 interface and minor conformational adjustments occurring upon the inhibitor binding.  相似文献   

11.
12.
Three-dimensional structural analysis of physiologically important serine proteases is useful in identifying functional features relevant to the expression of their activities and specificities. The human serine protease anticoagulant protein C is currently the object of many genetic site-directed mutagenesis studies. Analyzing relationships between its structure and function and between naturally occurring mutations and their corresponding clinical phenotypes would be greatly assisted by a 3-dimensional structure of the enzyme. To this end, molecular models of the protease domain of protein C have been produced using computational techniques based on known crystal structures of homologous enzymes and on protein C functional information. The resultant models corresponding to different stages along the processing pathway of protein C were analyzed for structural and electrostatic differences arising during the process of protein C maturation and activation. The most satisfactory models included a calcium ion bound to residues homologous to those that ligate calcium in the trypsin structure. Inspection of the surface features of the models allowed identification of residues putatively involved in specific functional interactions. In particular, analysis of the electrostatic potential surface of the model delineated a positively charged region likely to represent a novel substrate recognition exosite. To assist with future mutational studies, binding of an octapeptide representing a protein C cleavage site of its substrate factor Va to the enzyme's active site region was modeled and analyzed.  相似文献   

13.
PRSS3/mesotrypsin is an atypical isoform of trypsin, the up-regulation of which has been implicated in promoting tumour progression. Mesotrypsin inhibitors could potentially provide valuable research tools and novel therapeutics, but small-molecule trypsin inhibitors have low affinity and little selectivity, whereas protein trypsin inhibitors bind poorly and are rapidly degraded by mesotrypsin. In the present study, we use mutagenesis of a mesotrypsin substrate, APPI (amyloid precursor protein Kunitz protease inhibitor domain), and of a poor mesotrypsin inhibitor, BPTI (bovine pancreatic trypsin inhibitor), to dissect mesotrypsin specificity at the key P(2)' position. We find that bulky and charged residues strongly disfavour binding, whereas acidic residues facilitate catalysis. Crystal structures of mesotrypsin complexes with BPTI variants provide structural insights into mesotrypsin specificity and inhibition. Through optimization of the P(1) and P(2)' residues of BPTI, we generate a stable high-affinity mesotrypsin inhibitor with an equilibrium binding constant K(i) of 5.9 nM, a >2000-fold improvement in affinity over native BPTI. Using this engineered inhibitor, we demonstrate the efficacy of pharmacological inhibition of mesotrypsin in assays of breast cancer cell malignant growth and pancreatic cancer cell invasion. Although further improvements in inhibitor selectivity will be important before clinical potential can be realized, the results of the present study support the feasibility of engineering protein protease inhibitors of mesotrypsin and highlight their therapeutic potential.  相似文献   

14.
The interaction of domains of the Kazal-type inhibitor protein dipetalin with the serine proteinases thrombin and trypsin is studied. The functional studies of the recombinantly expressed domains (Dip-I+II, Dip-I and Dip-II) allow the dissection of the thrombin inhibitory properties and the identification of Dip-I as a key contributor to thrombin/dipetalin complex stability and its inhibitory potency. Furthermore, Dip-I, but not Dip-II, forms a complex with trypsin resulting in an inhibition of the trypsin activity directed towards protein substrates. The high resolution NMR structure of the Dip-I domain is determined using multi-dimensional heteronuclear NMR spectroscopy. Dip-I exhibits the canonical Kazal-type fold with a central alpha-helix and a short two-stranded antiparallel beta-sheet. Molecular regions essential for inhibitor complex formation with thrombin and trypsin are identified. A comparison with molecular complexes of other Kazal-type thrombin and trypsin inhibitors by molecular modeling shows that the N-terminal segment of Dip-I fulfills the structural prerequisites for inhibitory interactions with either proteinase and explains the capacity of this single Kazal-type domain to interact with different proteinases.  相似文献   

15.
Serine proteinase inhibitors are widely distributed in nature and inhibit the activity of enzymes like trypsin and chymotrypsin. These proteins interfere with the physiological processes such as germination, maturation and form the first line of defense against the attack of seed predator. The most thoroughly examined plant serine proteinase inhibitors are found in the species of the families Leguminosae, Graminae, and Solanaceae. Leucaena leucocephala belongs to the family Leguminosae. It is widely used both as an ornamental tree as well as cattle food. We have constructed a three-dimensional model of a serine proteinase inhibitor from L. leucocephala seeds (LTI) complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor (STI) using the program, MODELLER6. The quality of the model was assessed stereochemically by PROCHECK. LTI shows structural features characteristic of the Kunitz type trypsin inhibitor and shows 39% residue identity with STI. LTI consists of 172 amino acid residues and is characterized by two disulfide bridges. The protein is a dimer with the two chains being linked by a disulfide bridge. Despite the high similarity in the overall tertiary structure, significant differences exist at the active site between STI and LTI. The present study aims at analyzing these interactions based on the available amino acid sequences and structural data. We have also studied some functional sites such as phosphorylation, myristoylation, which can influence the inhibitory activity or complexation with other molecules. Some of the differences observed at the active site and functional sites can explain the unique features of LTI.  相似文献   

16.
荞麦胰蛋白酶抑制剂(BTI)属于丝氨酸蛋白酶抑制剂Potato I家族,典型构象中有1段暴露在分子外侧的结合区,该区内P1′、P2、P6′与P8′位的氨基酸残基具有高度保守性.本文依据近期解析的rBTI晶体结构以及rBTI与胰蛋白酶复合物晶体结构信息,对rBTI 中的P2和P8′位氨基酸进行突变,构建了pExSecI- Bti-P44T 和 pExSecI-Bti-W53R 重组质粒,转入大肠杆菌 BL21(DE3)中进行表达,通过Resource Q阴离子交换层析和Superdex G 75 HR 10/300凝胶柱进行分离纯化后,测定了rBTI及其突变体对胰蛋白酶的抑制常数,以及它们对HepG2 细胞内的蛋白酶体和细胞增殖的抑制作用. 实验结果显示,rBTI 的44和53位分别突变为 Thr和Arg后,Ki 分别为2.91×10-9mol/L和2.97 ×10-7mol /L,前者较rBTI(Ki = 3.56×10-8 mol/L)降低1个数量级,而后者较rBTI升高1个数量 级.功能分析显示,rBTI及2种突变体对HepG2细胞内的蛋白酶体基本没有抑制作 用,但是它们都保留了对HepG2细胞增殖的抑制活性.这些结果揭示,作为一种特异的胰蛋白酶抑制剂,rBTI分子中的保守区域氨基酸残基虽然对胰蛋白酶的抑制作用有显著影响,但并不影响其抑制肿瘤细胞的增殖,仍能发挥其原有的生物学功能.  相似文献   

17.
An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P1 (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P′2 favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P1 and P′2 substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin·APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.  相似文献   

18.
The large variety of serine protease inhibitors, available from various sources such as tissues, microorganisms, plants, etc., play an important role in regulating the proteolytic enzymes. The analysis of protease-inhibitor complexes helps in understanding the mechanism of action, as well as in designing inhibitors. Vasopressin, an anti-diuretic nonapeptide hormone, is found to be an effective inhibitor of trypsin, with a K(i) value of 5 nM. The crystal structure of the trypsin-vasopressin complex revealed that vasopressin fulfils all the important interactions for an inhibitor, without any break in the scissile peptide bond. The cyclic nature due to a disulfide bridge between Cys1 and Cys6 of vasopressin provides structural rigidity to the peptide hormone. The trypsin-binding site is located at the C terminus, while the neurophysin-binding site is at the N terminus of vasopressin. This study will assist in designing new peptide inhibitors. This study suggests that vasopressin inhibition of trypsin may have unexplored biological implications.  相似文献   

19.
The structure and function of Bowman-Birk inhibitors (BBIs) from dicotyledonous plants such as soybean have been studied extensively. In contrast, relatively little is known about the BBIs from monocotyledonous plants such as barley, which differ from dicot BBIs in size and tertiary structure. The BBI from barley seeds (BBBI) consists of 125 amino acid residues with two separate inhibitory loops. Previously we determined the high-resolution structure of a 16 kDa BBBI in the free state. The BBBI folds into two compact domains (N and C domain) with tertiary structures that are similar to that of the 8 kDa BBI from dicots. Here we report the structure of a 1:2 complex between BBBI and porcine pancreatic trypsin (PPT) at 2.2 A resolution. This structure confirms that several regions, including the inhibitory loops in the free BBBI structure, show exceptionally low temperature factors and a distorted conformation due to crystalline packing in the lattice. Extensive analysis of the interaction between BBBI and trypsin, and comparison with other known canonical inhibitor-protease complexes, reveals that the mode of interaction between BBBI and PPT is similar to that of known serine protease inhibitors, as expected; however, several unique features are also identified in the primary binding sites near the inhibitory loops as well as in additional binding sites. The carboxy-terminal tail of the inhibitor extends into the interface between the two trypsin molecules and interacts with both of them simultaneously. The longest distance between the two P1 residues (Arg17 and Arg76) in the complex structure is approximately 34 A, which is shorter than in the free inhibitor, but it is still possible for BBBI to bind and inhibit two trypsin molecules simultaneously and independently.  相似文献   

20.
The development of effective protease therapeutics requires that the proteases be more resistant to naturally occurring inhibitors while maintaining catalytic activity. A key step in developing inhibitor resistance is the identification of key residues in protease-inhibitor interaction. Given that majority of the protease therapeutics currently in use are trypsin-fold, trypsin itself serves as an ideal model for studying protease-inhibitor interaction. To test the importance of several trypsin-inhibitor interactions on the prime-side binding interface, we created four trypsin single variants Y39A, Y39F, K60A, and K60V and report biochemical sensitivity against bovine pancreatic trypsin inhibitor (BPTI) and M84R ecotin. All variants retained catalytic activity against small, commercially available peptide substrates [kcat/KM = (1.2 ± 0.3) × 107 M−1 s−1. Compared with wild-type, the K60A and K60V variants showed increased sensitivity to BPTI but less sensitivity to ecotin. The Y39A variant was less sensitive to BPTI and ecotin while the Y39F variant was more sensitive to both. The relative binding free energies between BPTI complexes with WT, Y39F, and Y39A were calculated based on 3.5 µs combined explicit solvent molecular dynamics simulations. The BPTI:Y39F complex resulted in the lowest binding energy, while BPTI:Y39A resulted in the highest. Simulations of Y39F revealed increased conformational rearrangement of F39, which allowed formation of a new hydrogen bond between BPTI R17 and H40 of the variant. All together, these data suggest that positions 39 and 60 are key for inhibitor binding to trypsin, and likely more trypsin-fold proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号