首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》2005,83(4):321-331
Two genotypes of rice (Oryza sativa L.), 94D-54 and 94D-64 were used to investigate the formation of iron plaque controlled by different phosphorus (P) concentrations and the effect of iron plaque on arsenate uptake in a hydroponic experiment. External P concentrations from 10 to 50 μM caused a marked decrease in dithionite-citrate-bicarbonate (DCB)–Fe concentrations for both genotypes, but further increases from 50 to 300 μM only resulted in small decrease. Arsenic (As) concentrations in DCB-extracts were determined by the amounts of iron plaque and the adsorption capacity of As by iron plaque, and both controlled by external P concentrations. At 10 μM external P, genotype 94D-54 had higher Fe, As and P concentrations in DCB-extracts than genotype 94D-64, but the difference disappeared with increasing P concentrations. Increasing P concentrations decreased the percentages of As distributed in iron plaque from around 70 to 10%, and increased the percentages of As in roots and shoots gradually from around 20 to 60% for toots and from 5 to nearly 35% for shoots, respectively. Moreover, P concentration increased the molar ratio of shoot-to-root As, from 0.05 to nearly 0.2, indicating P concentration may promote As translocation from roots to shoots.  相似文献   

2.
Huang Y  Hatayama M  Inoue C 《Planta》2011,234(6):1275-1284
In some plant species, various arsenic (As) species have been reported to efflux from the roots. However, the details of As efflux by the As hyperaccumulator Pteris vittata remain unknown. In this study, root As efflux was investigated for different phosphorus (P) supply conditions during or after a 24-h arsenate uptake experiment under hydroponic growth conditions. During an 8-h arsenate uptake experiment, P-supplied (P+) P. vittata exhibited much greater arsenite efflux relative to arsenate uptake when compared with P-deprived (P–) P. vittata, indicating that arsenite efflux was not proportional to arsenate uptake. In the As efflux experiment following 24 h of arsenate uptake, arsenate efflux was also observed with arsenite efflux in the external solution. All the results showed relatively low rates of arsenate efflux, ranging from 5.4 to 16.1% of the previously absorbed As, indicating that a low rate of arsenate efflux to the external solution is also a characteristic of P. vittata, as was reported with arsenite efflux. In conclusion, after 24 h of arsenate uptake, both P+ and P– P. vittata loaded/effluxed similar amounts of arsenite to the fronds and the external solution, indicating a similar process of xylem loading and efflux for arsenite, with the order of the arsenite concentrations being solution ≪ roots ≪ fronds.  相似文献   

3.
Arsenic speciation and cycling in the natural environment are highly impacted via biological processes. Since arsenic is ubiquitous in the environment, microorganisms have developed resistance mechanisms and detoxification pathways to overcome the arsenic toxicity. This study has evaluated the toxicity, transformation and accumulation of arsenic in a soil microalga Scenedesmus sp. The alga showed high tolerance to arsenite. The 72-h 50 % growth inhibitory concentrations (IC50 values) of the alga exposed to arsenite and arsenate in low-phosphate growth medium were 196.5 and 20.6 mg? L?1, respectively. When treated with up to 7.5 mg? L?1 arsenite, Scenedesmus sp. oxidised all arsenite to arsenate in solution. However, only 50 % of the total arsenic remained in the solution while the rest was accumulated in the cells. Thus, this alga has accumulated arsenic as much as 606 and 761 μg? g?1 dry weight when exposed to 750 μg? L?1 arsenite and arsenate, respectively, for 8 days. To our knowledge, this is the first report of biotransformation of arsenic by a soil alga. The ability of this alga to oxidise arsenite and accumulate arsenic could be used in bioremediation of arsenic from contaminated water and soil.  相似文献   

4.
The arsenic metabolism in different biological organisms has been studied extensively. However, little is known about protozoa. Herein, we investigated the cell stress responses of the freshwater ciliate Tetrahymena pyriformis to arsenate toxicity. An acute toxicity assay revealed an 18-h EC(50) arsenate concentration of ca. 40 μM, which caused significant changes in the cell shape, growth and organism mobility. Whereas, under exposure to 30 μM arsenate, T. pyriformis could grow reasonably well, indicating a certain resistance of this organism. Arsenic speciation analysis revealed that 94-98% of the total arsenate in cells of T. pyriformis could be transformed to monomethylarsonic acid, dimethylarsinic acid and a small proportion of arsenite after 18 h of arsenate exposure, thus indicating the major detoxification pathway by arsenic oxidation/reduction and biomethylation. Finally, comparative proteomic analysis unveiled significant changes in the expression of multiple proteins involved in anti-oxidation, sugar and energy metabolism, proteolysis, and signal transduction. Our results revealed multiple pathways of arsenate detoxification in T. pyriformis, and indicated that protozoa may play important roles in the biogeochemical cycles of arsenic.  相似文献   

5.
The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).  相似文献   

6.
The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis–Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis–Menten kinetics. Arsenite influx was well described by the two parameter model of ‘Michaelis–Menten’ kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA.  相似文献   

7.
The effects of phosphorus (P) status on arsenate reductase gene (OsACR2.1) expression, arsenate reductase activity, hydrogen peroxide (H2O2) content, and arsenic (As) species in rice seedlings which were exposed to arsenate after ?P or +P pretreatments were investigated in a series of hydroponic experiments. OsACR2.1 expression increased significantly with decreasing internal P concentrations; more than 2-fold and 10-fold increases were found after P starvation for 30 h and 14 days, respectively. OsACR2.1 expression exhibited a significant positive correlation with internal root H2O2 accumulation, which increased upon P starvation or exposure to H2O2 without P starvation. Characterization of internal and effluxed As species showed the predominant form of As was arsenate in P-starved rice root, which contrasted with the +P pretreated plants. Additionally, more As was effluxed from P-starved rice roots than from non-starved roots. In summary, an interesting relationship was observed between P-starvation induced H2O2 and OsACR2.1 gene expression. However, the up-regulation of OsACR2.1 did not increase arsenate reduction in P-starved rice seedlings when exposed to arsenate.  相似文献   

8.
Abstract

A Potentiometric titration method was used to study the adverse effect of arsenate (As(V)) and arsenite (As(III)) on inorganic carbon uptake in suspensions of the green alga Scenedesmus obliquus. The measurements were performed in a closed CO2-system with diluted synthetic seawater (1‰ salinity) as ionic medium. Usually, the algal chlorophyll concentration was 0.4 mg dm?3, while the arsenate- and arsenite-concentrations were varied within the limits 0.1 to 200 μmol dm?3. In some experiments arsenate toxicity was studied in the presence of 1 to 100 μmol dm?3 of phosphate (P(V)).

With concentrations of arsenate or arsenite less than 0.1 μmol dm?3 no toxic effects were observed. However, at As-concentrations of 200 μmol dm?3, the algal carbon uptake was reduced by 41% with arsenate and 29% with arsenite, i.e., arsenate is more toxic to Scenedesmus obliquus than arsenite. The toxicity of arsenate was negligible in the presence of a ten fold excess of phosphate. This is probably due to chemical similarities between arsenate and phosphate causing competition between the ions for the binding sites.

The importance of taking the speciation as well as the buffer capacity of the algal system into account, when calculating the carbon uptake, is also discussed.  相似文献   

9.

Background and aims

Limited information is available on comparing the iron plaque formation capabilities and their effect on arsenic (As) uptake by different rice plant genotypes grown in As-contaminated soils. This study investigates the effect of iron plaque on As uptake in different rice genotypes grown in As-contaminated soils from the Guandu Plain of northern Taiwan.

Methods

Twenty-eight rice genotypes including 14 japonica and 14 indica genotypes were used in this study. Rice seedlings were grown in As-contaminated soils for 38 days. The iron plaque formed on the rice roots were extracted using dithionite–citrate–bicarbonate. The concentrations of As, Fe, and P in soil solutions, iron plaque, and plants were measured. The speciation of As in the root’s iron plaque was determined by As K-edge X-ray absorption near-edge structure spectroscopy (XANES).

Results

The amounts of iron plaque formation on roots were significantly different among 28 tested rice genotypes, and 75.7–92.8 % of As uptake from soils could be sequestered in iron plaque. However, there were no significant negative correlations between the amounts of Fe or As in the iron plaque and the content of As accumulated in rice plants of tested genotypes. XANES data showed that arsenate was the predominant As species in iron plaque, and there were difference in the distribution of As species among different rice genotypes.

Conclusions

The iron plaque can sequester most of As uptake from soils no matter what rice genotypes used in this study. However, the iron plaque alone did not control the extent of As accumulation in rice plants from As-contaminated soils among 28 tested rice genotypes. Low As uptake genotypes of rice selected from this study can be recommended to be grown in the As-contaminated soils.  相似文献   

10.
Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.  相似文献   

11.
To obtain bacteria with arsenic accumulation potential that can be used to remove arsenic from contaminated waters, experiments were made to investigate the tolerance and accumulation to arsenic of an indigenous bacterium XZM002 isolated from aquifer sediments of Datong Basin, northern China. The results showed that strain XZM002 belongs to the genus Bacillus and has evolved defense mechanisms to reduce arsenic injury: the change of cellular shape from initial rod to oval and then to round with increment of arsenic toxicity. The effect of arsenate or arsenite on the bacterial growth was also investigated. Results showed that growth of the strain was inhibited under As(III) and high concentration As(V) (over 1200 μg l?1) conditions in the first 2 days and promoted under low concentration As(V) (under 400 μg l?1) condition. Its arsenic bioaccumulation potential was surveyed by monitoring the concentration changes of total arsenic and arsenic speciation in the medium and in the cytoplasm, and those of total arsenic on the membrane. Methylated arsenic species were not detected throughout the experiment. The results indicated that 11.5% of arsenic was removed from liquid medium into the bacterial cells and 9.22% of As(V) in the medium was transformed gradually to As(III) during 4 d of incubation. Approximately 80% of the total accumulated arsenic was adsorbed onto the membrane instead of into cytoplasm; and the arsenic accumulation almost approached saturation after incubation for 72 h.  相似文献   

12.
Due to similarities in their chemical behaviors, studies examining interactions between arsenic (As)—in special arsenate—and phosphorus (P) are important for better understanding arsenate uptake, toxicity, and accumulation in plants. We evaluated the effects of phosphate addition on plant biomass and on arsenate and phosphate uptake by Anadenanthera peregrina, an important Brazilian savanna legume. Plants were grown for 35 days in substrates that received combinations of 0, 10, 50, and 100 mg kg?1 arsenate and 0, 200, and 400 mg kg?1 phosphate. The addition of P increased the arsenic-phytoremediation capacity of A. peregrina by increasing As accumulation, while also alleviating As-induced oxidative stress. Arsenate phytotoxicity in A. peregrina is due to lipid peroxidation, but not hydrogen peroxide accumulation. Added P also increased the activity of important reactive oxygen species-scavenging enzymes (catalase and ascorbate peroxidase) that help prevent lipid peroxidation in leaves. Our findings suggest that applying P represents a feasible strategy for more efficient As phytoremediation using A. peregrina.  相似文献   

13.
Tomato plants were cultivated in greenhouse and water solutions of arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA) and dimethylarsinic acid (DMA) were applied individually into cultivation substrate at two As levels, 5 and 15 mg kg−1 of the substrate. Comparing the availability of arsenic compounds increased in order arsenite = arsenate < MA < DMA where the arsenic contents in plants decreased during vegetation period. Within a single plant, the highest arsenic concentration was found in roots followed in decreasing order by leaves, stems, and fruits regardless of arsenic compound applied. Arsenic toxicity symptoms reflected in suppressed growth of plants and a lower number and size of fruits were most significant with DMA treatment. However, the highest accumulation of arsenic by plants growing in the soil containing DMA was caused by higher mobility of this compound in the soil due to its lower sorption affinity. Our results confirmed substantial role of transformation processes of arsenic compounds in soil in uptake and accumulation of arsenic by plants.  相似文献   

14.
Poynton CY  Huang JW  Blaylock MJ  Kochian LV  Elless MP 《Planta》2004,219(6):1080-1088
Several species of fern from the Pteris genus are able to accumulate extremely high concentrations of arsenic (As) in the fronds. We have conducted short-term unidirectional As influx and translocation experiments with 73As-radiolabeled arsenate, and found that the concentration-dependent influx of arsenate into roots was significantly larger in two of these As-hyperaccumulating species, Pteris vittata (L.) and Pteris cretica cv. Mayii (L.), than in Nephrolepis exaltata (L.), a non-accumulating fern. The arsenate influx could be described by Michaelis-Menten kinetics and the kinetic parameter K m was found to be lower in the Pteris species, indicating higher affinity of the transport protein for arsenate. Quantitative analysis of kinetic parameters showed that phosphate inhibited arsenate influx in a directly competitive manner, consistent with the hypothesis that arsenate enters plant roots on a phosphate-transport protein. The significantly augmented translocation of arsenic to the shoots that was seen in these As hyperaccumulator species is proposed to be due to a combination of the increased root influx and also decreased sequestration of As in the roots, as a larger fraction of As could be extracted from roots of the Pteris species than from roots of N. exaltata. This leaves a larger pool of mobile As available for translocation to the shoot, probably predominantly as arsenite.Abbreviations As V Arsenate - As III Arsenite - K m Michaelis-Menten constant - P i Phosphate - V max Maximum rate of an enzyme-catalyzed reaction  相似文献   

15.
The study highlights the role of sulfur (S) in detoxification of arsenate-induced toxicity and the shift in essential element homeostasis in Zea mays L (SRHM 445). Overall growth of arsenate-treated plants under sulfur starvation (?S) was lower than that in the presence of excess sulfur (+S). Translocation of arsenate from roots to shoots, increased under As(?S) and decreased with As(+S). The level of micronutrients (Cu, Zn, Fe) increased in As(?S) plants. Whereas, the level of K and PO4 was higher in As(?S) plants than in As(+S) plants. Higher malondialdehyde, protein carbonyl, and H2O2 levels in As(?S) plants are indicative of higher oxidative stress. Higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities, in As(?S) plants coincided with higher H2O2 levels showing the activity of these enzymes are independent of S availability. Absence of reduced glutathione/oxidized glutathione pool in (?S) plants manifested into failure of ascorbate–glutathione detoxification pathway. Hence, S has dual role of protecting the plant against arsenate-induced toxicity (1) by restricting arsenic (As) translocation to the upper parts and (2) by increasing the activity SOD and APX.  相似文献   

16.
To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in Km and Vmax values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 μM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds.  相似文献   

17.
We conducted field experiments over 2 years on two acid soils of southern Cameroon to test whether efficient uptake and use of phosphorus (P) from less available sources by grain legume genotypes could benefit subsequent rotational maize. We grew two crops each year. For the first crop we grew 4 genotypes of soybean and of cowpea, plus maize. For the second crop we grew maize. The first crops were fertilized with 0, 90 kg P ha−1 as phosphate rock (PR) or 30 kg P ha−1 as triple super phosphate (TSP). P application highly significantly increased shoot dry matter, P uptake, N2 fixation and grain yields of the grain legumes with TSP generally more effective than PR. Two of the soybean and two of the cowpea genotypes were more efficient at using P. Only the P-efficient soybean and cowpea genotypes increased subsequent maize yields. Yields of the subsequent maize grown in rotation were significantly correlated with shoot P uptake for which the quantity of P applied with the crop residues of the pre-crop appeared to be a major factor. We also grew the grain legumes in nutrient solutions and measured organic acid-anion exudation from roots, root-surface phosphatase-activity, and root morphological characteristics. Enhanced exudation of organic acid anions from roots of P-deprived plants might have contributed to the P acquisition efficiency under field conditions of the P-efficient cowpea genotypes and one of the P-efficient soybean genotypes. A higher activity of root-surface acid phosphatase might have been important for the other P-efficient soybean genotype. The results show, that the potential positive rotational effect of cowpea and soybean on the acid, highly P-sorbing soils of southern Cameroon depends on breeding and using P-efficient genotypes when sparingly soluble and suboptimal rates of soluble P fertilizers are used. Section Editor: N. J. Barrow  相似文献   

18.
The burning of wood treated with chromated copper arsenate (CCA) produces an ash that contains high concentrations of copper, chromium, and arsenic. The subsequent leaching of these metals from burn sites can produce soil and water contamination. Soils have varying natural abilities to reduce leaching and impact metals speciation and toxicity by sorption, conversion, and sedimentation-related mechanisms. Recent regulations have resulted in increased quantities of CCA-treated lumber entering the waste stream, making the study of metals leaching from ash, and the amendment of soils to more effectively immobilize metals, important areas of investigation.

The performance of various soil amendments to immobilize or retard Cu, Cr, and As species in soil/CCA-ash mixtures was studied. The amendments evaluated were agricultural lime (CaCO3/MgCO3), soil softener (CaSO4 · 2H2O), and iron sulfate (FeSO4). Results of this investigation show that native soil alone retards the mobility of As and Cr, amendments applied alone or in combinations further retard metal mobility compared to the control soil/CCA-ash mixture. The CaSO4 soil amendment is most effective in reducing the rainwater leaching of Cr and As from CCA-ash in soil reducing the mobility by 72.4% and 77.3%, respectively, compared to the control soil-ash mixture. Cu mobility is increased in the presence of the native soil and by all amendments.  相似文献   


19.
This study aimed at evaluating potential arsenic (As) mobility in an industrially contaminated soil (64 mg/kg of As) of the Meuse River basin, and at identifying key bacterial groups that drive soil As dynamics. Both speciation and release of As from this soil was followed under anaerobic conditions using a laboratory batch experiment. In the presence of exogenous carbon sources, AsV initially present in the soil matrix and/or adsorbed on synthetic hydrous ferric oxides were solubilized and mainly reduced to AsIII by indigenous soil microflora. After a 1-month incubation period in these biotic conditions, AsIII accounted for 80–85% of the total dissolved As and more than 60% of the solid-phase As. Bacterial community structure (i.e., 16S rDNA-based capillary electrophoresis single-strand conformation polymorphism profiles) changed with incubation time and As amendment. The detection of distantly related arsenate respiratory reductase genes (arrA), as functional markers of AsV respirers, indicates that novel dissimilatory AsV-reducing bacteria may be involved in As biotransformation and mobility in anoxic soils. Since As and iron were concomitantly released, a crucial role of indirect As-mobilizing bacteria on As behavior was also revealed. Our results show that the majority of As within the soil matrix was bioavailable and bioaccessible for heterotrophic AsV reduction to AsIII, which may increase As toxicity and mobility in the contaminated soils.  相似文献   

20.
Microbial biotransformations are major contributors to the arsenic biogeocycle. In parallel with transformations of inorganic arsenic, organoarsenicals pathways have recently been recognized as important components of global cycling of arsenic. The well‐characterized pathway of resistance to arsenate is reduction coupled to arsenite efflux. Here, we describe a new pathway of arsenate resistance involving biosynthesis and extrusion of an unusual pentavalent organoarsenical. A number of arsenic resistance (ars) operons have two genes of unknown function that are linked in these operons. One, gapdh, encodes the glycolytic enzyme glyceraldehyde‐3‐phosphate dehydrogenase. The other, arsJ, encodes a major facilitator superfamily (MFS) protein. The two genes were cloned from the chromosome of Pseudomonas aeruginosa. When expressed together, but not alone, in Escherichia coli, gapdh and arsJ specifically conferred resistance to arsenate and decreased accumulation of As(V). Everted membrane vesicles from cells expressing arsJ accumulated As(V) in the presence of purified GAPDH, D‐glceraldehylde 3‐phosphate (G3P) and NAD+. GAPDH forms the unstable organoarsenical 1‐arseno‐3‐phosphoglycerate (1As3PGA). We propose that ArsJ is an efflux permease that extrudes 1As3PGA from cells, where it rapidly dissociates into As(V) and 3‐phosphoglycerate (3PGA), creating a novel pathway of arsenate resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号