首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Auracyanins A and B are two closely similar “blue” copper proteins produced by the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. Both proteins have a water-soluble 140-residue globular domain, which is preceded in the sequence by an N-terminal tail. The globular domains of auracyanins A and B have sequences that are 38% identical. The sequences of the N-terminal tails, on the other hand, are distinctly different, suggesting that auracyanins A and B occupy different membrane sites and have different functions. The crystal structure of auracyanin A has been solved and refined at 1.85 Å resolution. The polypeptide fold is similar to that of auracyanin B (Bond et al. in J Mol Biol 306:47–67, 2001), but the distribution of charged and polar residues on the molecular surface is different. The Cu-site dimensions of the two auracyanins are identical. This is unexpected, since auracyanin A has a shorter polypeptide loop between two of the Cu-binding residues, and the two proteins have significantly different EPR, UV–visible and resonance Raman spectra. The genes for the globular domains of auracyanins A and B have been cloned in a bacterial expression system, enabling purification of large quantities of protein. It is shown that auracyanin A is expressed only when C. aurantiacus cells are grown in light, whereas auracyanin B is expressed under dark as well as light conditions. The inference is that auracyanin A has a function in photosynthesis, and that auracyanin B has a function in aerobic respiration.  相似文献   

2.
The amino acid sequence of the small copper protein auracyanin A isolated from the thermophilic photosynthetic green bacterium Chloroflexus aurantiacus has been determined to be a polypeptide of 139 residues. His58, Cys123, His128, and Met132 are spaced in a way to be expected if they are the evolutionary conserved metal ligands as in the known small copper proteins plastocyanin and azurin. Secondary structure prediction also indicates that auracyanin has a general beta-barrel structure similar to that of azurin from Pseudomonas aeruginosa and plastocyanin from poplar leaves. However, auracyanin appears to have sequence characteristics of both small copper protein sequence classes. The overall similarity with a consensus sequence of azurin is roughly the same as that with a consensus sequence of plastocyanin, namely 30.5%. We suggest that auracyanin A, together with the B forms, is the first example of a new class of small copper proteins that may be descendants of an ancestral sequence to both the azurin proteins occurring in prokaryotic nonphotosynthetic bacteria and the plastocyanin proteins occurring in both prokaryotic cyanobacteria and eukaryotic algae and plants. The N-terminal sequence region 1-18 of auracyanin is remarkably rich in glycine and hydroxy amino acids, and required mass spectrometric analysis to be determined. The nature of the blocking group X is not yet known, although its mass has been determined to be 220 Da. The auracyanins are the first small blue copper proteins found and studied in anoxygenic photosynthetic bacteria and are likely to mediate electron transfer between the cytochrome bc1 complex and the photosynthetic reaction center.  相似文献   

3.
The reversible formal potentials of auracyanin A and auracyanin B, two closely related "blue" copper proteins from the photosynthetic bacterium Chloroflexus aurantiacus, have been determined by protein film voltammetry in the range 4相似文献   

4.
A blue-copper protein auracyanin of the filamentous anoxygenic phototroph Roseiflexus castenholzii was purified and characterized. Genomic sequence analysis showed that R. castenholzii has only one auracyanin, whereas Chloroflexus aurantiacus is known to have two auracyanins, A and B. Absorption spectrum of the Roseiflexus auracyanin was similar to that of auracyanin B of C. aurantiacus. On the other hand, ESR spectrum of the Roseiflexus auracyanin resembles that of auracyanin A of C. aurantiacus. These results suggest that the blue-copper protein auracyanin from R. castenholzii shares features with each of auracyanin A and B. Amino acid sequence alignment of auracyanins from filamentous anoxygenic phototrophs also demonstrated the chimeral feature of the primary structure of the Roseiflexus auracyanin, i.e., auracyanin A-like amino-terminal characteristics and auracyanin B-like one-residue spacing at the Cu-binding loop in the carboxyl-terminus.  相似文献   

5.
Auracyanin B, one of two similar blue copper proteins produced by the thermophilic green non-sulfur photosynthetic bacterium Chloroflexus aurantiacus, crystallizes in space group P6(4)22 (a=b=115.7 A, c=54.6 A). The structure was solved using multiple wavelength anomalous dispersion data recorded about the CuK absorption edge, and was refined at 1.55 A resolution. The molecular model comprises 139 amino acid residues, one Cu, 247 H(2)O molecules, one Cl(-) and two SO(4)(2-). The final residual and estimated standard uncertainties are R=0.198, ESU=0.076 A for atomic coordinates and ESU=0.05 A for Cu---ligand bond lengths, respectively. The auracyanin B molecule has a standard cupredoxin fold. With the exception of an additional N-terminal strand, the molecule is very similar to that of the bacterial cupredoxin, azurin. As in other cupredoxins, one of the Cu ligands lies on strand 4 of the polypeptide, and the other three lie along a large loop between strands 7 and 8. The Cu site geometry is discussed with reference to the amino acid spacing between the latter three ligands. The crystallographically characterized Cu-binding domain of auracyanin B is probably tethered to the periplasmic side of the cytoplasmic membrane by an N-terminal tail that exhibits significant sequence identity with known tethers in several other membrane-associated electron-transfer proteins.  相似文献   

6.
Gunnar Fröman 《FEBS letters》1982,143(2):220-224
Absorption, circular dichroism, electron spin resonance and resonance Raman spectra of a blue copper protein, plantacyanin from cucumber peel have been measured and these spectral properties compared with those of other blue copper proteins. From the spectral properties, amino acid analysis and redox potential, we discuss the active site and redox properties of this protein.  相似文献   

7.
To study the importance of a rigid copper site for the structure and function of azurin, a mutant with a reduced number of internal hydrogen bonds around the copper has been prepared and characterized. To this purpose, the previously cloned azu gene from Alcaligenes denitrificans (Hoitink, C. W. G., Woudt, L. P., Turenhout, J. C. M., Van de Kamp, M., and Canters, G. W. (1990) Gene (Amst.) 90, 15-20) was expressed in Escherichia coli and an isolation and purification procedure for the azurin was developed. The azurin obtained after heterologous expression in E. coli appears spectroscopically indistinguishable from azurin derived from A. denitrificans. The hydrogen bonding network around the copper site was altered by replacing Asn47 by a leucine by means of site-directed mutagenesis. Asn47 is a conserved residue in all blue copper proteins of which the primary structure has been reported. Characterization of the mutant protein with UV-visible, electron spin resonance, and NMR spectroscopy, and comparison with the wild type azurin revealed that the structure of the copper site as well as the overall structure of the protein have been largely retained. The redox activity as measured by the electron self-exchange rate appears not to have changed either. However, the mutant differs from the wild type azurin with respect to stability and midpoint potential. Midpoint potentials of mutant and wild type azurin amount to 396 and 286 mV, respectively. The difference is due to sizable entropic and enthalpic contributions which to a large extent cancel. Possible explanations for the outcome of these experiments are discussed.  相似文献   

8.
Electron paramagnetic resonance studies of Complex II from the mitochondrial respiratory chain and soluble preparations of succinate dehydrogenase have, for the first time, identified a signal arising from a [4Fe-4S]1+ cluster, S2, in dithionite-reduced samples. Redox titrations, monitored by electron paramagnetic resonance spectroscopy demonstrate that this signal appears at the same midpoint potential as the enhancement of the spin relaxation properties of the [2Fe-2S]1+ center, S1, in both Complex II and reconstitutively active soluble enzyme. The results complement recent magnetic circular dichroism studies of succinate dehydrogenase (Johnson, M. K., Morningstar, J. E., Bennett, D. E., Ackrell, B. A. C., and Kearney, E. B. (1985) J. Biol. Chem. 260, 7368-7378) which assigned cluster S2 as a [4Fe-4S]2+,1+ center and provide evidence for spin interaction between the paramagnetic reduced forms of centers S1 and S2.  相似文献   

9.
On the basis of the spatial structure of ascorbate oxidase [Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, M., Gatti, G., Marchesini, A., Petruzzelli, R. & Finazzi-Agro, A. (1989) J. Mol. Biol. 206, 513-529], an alignment of the amino acid sequence of the related blue oxidases, laccase and ceruloplasmin is proposed. This strongly suggests a three-domain structure for laccase closely related to ascorbate oxidase and a six-domain structure of ceruloplasmin. These domains demonstrate homology with the small blue copper proteins. The relationships suggest that laccase, like ascorbate oxidase, has a mononuclear blue copper in domain 3 and a trinuclear copper between domain 1 and 3 and ceruloplasmin has mononuclear copper ions in domains 2, 4 and 6 and a trinuclear copper between domains 1 and 6.  相似文献   

10.
11.
Bacteriophage M13 major coat protein has been isolated with cholate and reconstituted in dimyristoyl- and dioleoylphosphatidylcholine (DMPC and DOPC, respectively) bilayers by dialysis. Fourier transform infrared spectra of DMPC/coat protein recombinants confirmed that, whereas the protein isolated by phenol extraction was predominantly in a beta-sheet conformation, the cholate-isolated coat protein contained a higher proportion of the alpha-helical conformation [cf. Spruijt, R. B., Wolfs, C. J. A. M., & Hemminga, M. A. (1989) Biochemistry 28, 9158-9165]. The cholate-isolated coat protein/lipid recombinants gave different electron spin resonance (ESR) spectral line shapes of incorporated lipid spin labels, as compared with those from recombinants with the phenol-extracted protein that were studied previously [Wolfs, C. J. A. M., Horváth, L. I., Marsh, D., Watts, A., & Hemminga, M. A. (1989) Biochemistry 28, 9995-10001]. Plots of the ratio of the fluid/motionally restricted components in the ESR spectra of spin-labeled phosphatidylglycerol were linear with respect to the lipid/protein ratio in the recombinants up to 20 mol/mol. The corresponding values of the relative association constants, Kr, and number of association sites, N1, on the protein were Kr approximately 1 and N1 approximately 4 for DMPC recombinants and Kr approximately 1 and N1 approximately 5 for DOPC recombinants. Simulation of the two-component lipid spin label ESR spectra with the exchange-coupled Bloch equations gave values for the off-rate of the lipids leaving the protein surface of 2.0 x 10(7) s-1 at 27 degrees C in DMPC recombinants and 3.0 x 10(7) s-1 at 24 degrees C in DOPC recombinants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Resonance Raman spectra are reported for catalases from bovine liver, the ascomycete fungus Aspergillus niger, and the bacterium Micrococcus luteus. The vibrational frequencies of the oxidation-, spin-, and coordination number-sensitive spectral bands are indicative of high spin pentacoordinate hemes in the resting ferric enzymes of each of these organisms. This result is in accord with the crystal structure of bovine catalase (Fita, I., and Rossmann, M.G. (1985) J. Mol. Biol. 185, 21-37). In contrast, the crystallographic study of catalase from the ascomycete Penicillium vitale (Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A.A., Grebenko, A. I., Borisov, V. V., Bartels, K. S., Fita, I., and Rossmann, M. G. (1986) J. Mol. Biol. 188, 49-61) showed electron density on the distal side of the heme which could imply the presence of a sixth ligand, possibly a water molecule. However, both of these crystallographic studies showed the proximal ligand in catalase to be a tyrosine. The present study confirms tyrosinate coordination in each of the three catalases from the appearance of selected resonance-enhanced tyrosine vibrational modes. The most characteristic band is the tyrosinate ring mode at approximately 1612 cm-1 which is maximally enhanced with 488.0 nm excitation. The appearance of tyrosinate modes at 1607 and 1245 cm-1 in the resonance Raman spectra of M. luteus cyano catalase serves to identify tyrosine as an axial ligand in bacterial as well as eukaryotic catalases. Unlike non-heme iron tyrosinate proteins, whose resonance Raman spectra are dominated by several intense bands diagnostic of tyrosine ligation, the heme-linked tyrosine modes are not easily distinguished from the large number of porphyrin vibrations.  相似文献   

13.
Azospirillum brasilense glutamate synthase has been studied by absorption, electron paramagnetic resonance, and circular dichroism spectroscopies in order to determine the type and number of iron-sulfur centers present in the enzyme alpha beta protomer and to gain information on the role of the flavin and iron-sulfur centers in the catalytic mechanism. The FMN and FAD prosthetic groups are demonstrated to be non-equivalent with respect to their reactivities with sulfite. Sulfite reacts with only one of the two flavins forming an N(5)-sulfite adduct with a Kd of approximately 1 mM. The enzyme-sulfite complex is reduced by NADPH, and the complexed sulfite is competitively displaced by 2-oxoglutarate, which suggests the reactive flavin to be at the imine-reducing site. These data are in agreement with the two-site model of the enzyme active center proposed on the basis of kinetic studies [Vanoni, M.A., Nuzzi, L., Rescigno, M., Zanetti, G., & Curti, B. (1991) Eur. J. Biochem. 202, 181-189]. Each enzyme protomer was found, by chemical analysis, to contain 12.1 +/- 0.5 mol of non-heme iron. Electron paramagnetic resonance spectroscopic studies on the oxidized and reduced forms of glutamate synthase demonstrated the presence of three distinct iron-sulfur centers per enzyme protomer. The oxidized enzyme exhibits an axial spectrum with g values at 2.03 and 1.97, which is highly temperature-dependent and integrates to 1.1 +/- 0.2 spin/protomer. This signal is assigned to a [3Fe-4S]1+ cluster (Fe-S)I. Reduction of the enzyme with an NADPH-regenerating system results in reduction of the [3Fe-4S]1+ center to a species with a g approximately 12 signal characteristic of the S = 2 spin state of a [3Fe-4S]0 cluster. The NADPH-reduced enzyme also exhibits an [Fe-S] signal at g values of 1.98, 1.95, and 1.88, which integrates to 0.9 spin/protomer and is due to a second cluster (Fe-S)II. Reduction of the enzyme with the light/deazaflavin method results in a signal characteristic of [Fe-S] clusters with g values of 2.03, 1.92, and 1.86 and an integrated intensity of 1.9 spin/protomer. This signal arises from reduction of the (Fe-S)II center and from that of the third, lower potential iron-sulfur center (Fe-S)III. Circular dichroism spectral data on the oxidized and reduced forms of the enzyme are more consistent with the assignment of (Fe-S)II and (Fe-S)III as [4Fe-4S] clusters rather than [2Fe-2S] centers.  相似文献   

14.
The electron spin resonance signals of wild type Chlamydomonas reinhardi and three mutant strains having impaired photosynthesis have been investigated. The wild type strain generates two different electron spin resonance signals. Signal I is obtained without illumination (i.e., dark signal) whereas signal II is generated preferentially only by red light. Signal I is missing from wild type cells that have been cultured in the dark, but it returns after these dark-grown cells have been illuminated. Chloroplast fragments obtained from the three mutant strains cannot photoreduce TPN. Two of the strains lack the dark signal I while the third strain has both signal I and signal II. Other studies have revealed that the two mutant strains which lack signal I give no Hill reaction but that they can photoreduce TPN if supplied with an artificial reductant. The mutant strain which has both electron spin resonance signals can carry out the Hill reaction, yet it too will not photoreduce TPN unless reductant is supplied. The electron spin resonance signals generated by the wild type and mutant strains are discussed in terms of the pathway of TPN photoreduction, and it is suggested that signal I is associated with one of the two light-dependent phases of this pathway.  相似文献   

15.
Electron spin resonance, hematologic, and deformability studies of erythrocytes from patients with Huntington's disease have been performed A decreased deformability of Huntington's disease erythrocytes compared to normal controls was demonstrated. No difference in erythrocyte hematologic indices, osmotic fragility, reticulocyte counts, or intracellular Na+ concentration was found. Huntington's disease serum had no demonstrable effect on electron spin resonance parameters of a protein-specific spin label attached to membrane proteins in control erythrocytes compared to the effect of control serum. This finding suggests that under the conditions employed no serum component or circulating factor is responsible for the changes in the physical state of membrane proteins in Huntington's disease erythrocytes (Butterfield, D.A., Oeswein, J.Q. and Markesbery, W.R. (1977) Nature 267, 453--455). No alteration in lipid fluidity of Huntington's disease erythrocyte membranes could be discerned suggesting that the underlying molecular defect in Huntington's disease involves a membrane protein. The results of the present studies on erythrocytes strongly support the concept that Huntington's disease is associated with a generalized membrane abnormality.  相似文献   

16.
1. Laccases I, II and III were (EC 1.14.18.1) prepared from the mycelium of the ascomycete Podospora anserina. The tetrameric laccase I(mol. wt 340 000, 16 copper atoms) and the monomeric laccases II and II (mol. wt 80 000, 4 copper atoms) have been studied by optical absorption-, circular dichroism-(CD)and electron paramagnetic resonance spectroscopy (EPR). 2. The visible and near ultraviolet difference absorption spectrum, which is apparently identical for all three laccases, shows two maxima at 330 and 610 nm and a shoulder at about 725 nm. The molar extinction coefficients of these bands are 4 times larger for the tetrameric laccase I compared to the monomeric laccases II and III which show values similar to other blue copper-containing oxidases. 3. CD spectra between 300 and 730 nm of the tree laccases are similar and contain at least 5-bands in the oxidized enzyme. If the enzyme is reduced, only a band at 307 nm remains. The molar ellipticity values of these bands are 4 times larger for laccase I than the corresponding bands of laccases II and III. It is inferred that the reducible bands are associated with the Type 1 Cu-2+. 4. In all three laccases the EPR-detectable copper accounts for only about 50% of the total copper content. The 9-GHz and 35-GHz spectra, which are identical for all three laccases, consist of two components of equal intensity. One component shows a rather small copper hyperfine coupling and a small deviation from axial symmetry. It is suggested that this copper is associated with the blue chromophore in analogy to Type 1 Cu-2+ in other blue copper proteins. The other component has a broader hyperfine coupling similar to Type 2 Cu-2+ as found in other copper proteins. The assumption that the experimental spectra result from a superposition of the spectra of equal amounts of Type 1 and Type 2 Cu-2+ has been verified by computer simulation. 5. It is suggested that the copper ions which are not detected by EPR are connected to the absorption band at 330 nm and that these ions are also essential for the function of these laccases.  相似文献   

17.
Bollinger JA  Brown DE  Dooley DM 《Biochemistry》2005,44(35):11708-11714
Recent work in our laboratory has established methods for the expression and purification of a recombinant form of Drosophila lysyl oxdidase (rDMLOXL-1) [Molnar, J., Ujfaludi, Z., Fong, S. F. T., Bollinger, J. A., Waro, G., Fogelgren, B., Dooley, D. M., Mink, M., and Csiszar, K. (2005) J. Biol. Chem. 280, 22977-22985]. Previous investigations on the expression and purification of recombinant forms of lysyl oxidase [Kagan, H. M., Reddy, V. B., Panchenko, M. V., Nagan, N., Boak, A. M., Gacheru, S. N., and Thomas, K. (1995) J. Cell. Biochem. 59, 329-338] and lysyl oxidase-like proteins [Jung, S. T., Kim, M. S., Seo, J. Y., Kim, H. C., and Kim, Y. (2003) Protein Expression Purif. 31, 240-246] [Molnar, J., Fong, K. S. K., He, Q. P., Hayashi, K., Kim, Y., Fong, S. F. T., Fogelgren, B., Szauter, K. M., Mink, M., and Csiszar, K. (2003) Biochim. Biophys. Acta 1647, 220-224] have been reported in the literature. However, this is the first time that an expression system has been developed yielding sufficient amounts of a recombinant lysyl oxidase for detailed characterization. rDmLOXL-1 is secreted into the medium from S2 cells, and the protein is readily purified by Cibacon blue affinity chromatography yielding 10 mg of protein per liter of medium. The protein, as initially purified, is inactive and has no detectable copper or cofactor present. Following aerobic dialysis against copper, the protein is active and displays an electronic absorption spectrum with lambda(max) at 504 nm, consistent with the presence of an organic cofactor. Addition of phenylhydrazine to the copper-loaded protein produced a high-affinity adduct with lambda(max) at 454 nm. Comparison of the resonance Raman spectra of this adduct and a phenylhydrazine-labeled model compound of lysine tyrosylquinone (LTQ) establishes that the cofactor in the active, copper-containing enzyme is LTQ. Collectively, the data demonstrate that LTQ biogenesis most likely occurs by self-processing chemistry, requiring only the precursor protein, copper, and oxygen. Electron paramagnetic resonance and circular dichroism spectroscopy were used to characterize the Cu(II) site in rDmLOXL-1. The data are consistent with a tetragonal Cu(II) site with nitrogen and oxygen ligands. Recombinant DmLOXL-1 displayed significant activity toward tropoelastin and a wide variety of amines including polyamines and diamines. beta-aminoproprionitrile (betaAPN), a well-known irreversible inhibitor of mammalian lysyl oxidases, is also a potent inhibitor of rDmLOXL-1. Results from this investigation have important implications for the lysyl oxidase family.  相似文献   

18.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226).  相似文献   

19.
The method of continuous saturation has been used to measure the electron spin relaxation parameter T1T2 at temperatures between 10 and 50 K for a variety of S = 1/2 species including: CuA and cytochrome a of cytochrome c oxidase, the type 1 copper in several blue copper proteins, the type 2 copper in laccase, inorganic Cu(II) complexes, sulfur radicals, and low spin heme proteins. The temperature dependence and the magnitude of T1T2 for all of the species examined are accounted for by assuming that the Van Vleck Raman process dominates the electron spin-lattice relaxation. Over the entire temperature range examined, the relaxation of the type 1 coppers in six to seven times faster than that of type 2 copper, inorganic copper, and sulfur radicals, in spite of the similar g-anisotropies of these species. This result may indicate that the coupling of the phonon bath to the spin center is more effective in type 1 coppers than in the other complexes studied. The relaxation of CuA of cytochrome oxidase exhibits an unusual temperature dependence relative to the other copper complexes studied, suggesting that the protein environment of this center is different from that of the other copper centers studied and/or that CuA is influenced by a magnetic dipolar interaction with another, faster-relaxing paramagnetic site in the enzyme. A comparison of the saturation characteristics of the CuA EPR signal in native and partially reduced CO complexes of the enzyme also suggests the existence of such an interaction. The implications of these results with respect to the disposition of the metal centers in cytochrome oxidase are discussed.  相似文献   

20.
A flavodoxin was isolated from the blue-green alga Nostoc strain MAC grown photoautotrophically or chemoheterotrophically in iron-deficient medium. In vitro, the flavodoxin would support NADP+ photoreduction by photosynthetic membranes, pyruvate oxidation by the phosphoroclastic system of Clostridium pasteurianum, and electron transfer to Cl. pasteurianum hydrogenase. In its oxidized form, the flavodoxin had absorbance maxima at 274 sh283 sh293, 376 sh432 and 466 sh488 nm. Reduction by dithionite proceeded via a neutral, blue semiquinone radical. The flavodoxin contained 1 mol of FMN per mol of protein and the amino acid composition showed a predominance of acidic residues; cysteine was apparently absent. A minimum MW of ca 22 000 derived from these data was confirmed by electrophoresis on SDS-polyacrylamide gels and by ultracentrifugal analysis. This flavodoxin thus belongs to the higher MW group of these low potential electron transfer proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号