首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
The methylation status of a transgene, which carried the adenovirus type 2 E2A late promoter linked to the chloramphenicol acetyltransferase gene, was studied in three transgenic mouse lines (5–8, 7–1 and 8–1). These lines were analysed over a large number of offspring generations beyond the founder animal. In mating experiments, the influence of the parent-of-origin and strain-specific backgrounds on the transgene methylation patterns were assessed and found to have no effect on the pre-established methylation patterns in mouse lines 5–8 and 8–1. The founder animal 7–1 carried two groups of a total of ten transgenes, which were located on two different chromosomes. These arrays of transgenes could be segregated into separate mouse lines 7-1A and 7-1B. The transgenes of 7-1A animals exhibited cellular mosaic methylation, patterns that were demethylated in approximately 10% of the offspring in a mixed genetic background. Upon further transmission of these transgenes in a mixed genetic background, the grandparental methylation patterns were reestablished in most progeny. Mating to inbred DBA/2 mice resulted in maintenance of the demethylated pattern or in further demethylation of the transgenes in approximately 50% of the offspring. In contrast, an equal number of transgenic siblings from matings to C57BL/6 mice showed a return to the original methylation pattern. The mosaic methylation status of this locus was apparently controlled by mouse-strain-specific factors. The methylation patterns of the 7-1B transgenes were not cellular mosaic and remained stable in all offspring, as with lines 5–8 and 8–1. Hence, the strain-dependent and cellular mosaic transgene methylation patterns of 7-1A animals were probably a consequence of the chromosomal integration site of the transgenes (position effect).  相似文献   

2.
In cultured mammalian cells, foreign DNA can be integrated into the host genome. Foreign DNA is frequently de novo methylated in specific patterns with successive cell generations. The sequence-specific methylation of promoter sequences in integrated foreign DNA is associated with the long-term inactivation of eukaryotic genes. We have now extended these experiments to studies on transgenic mice. As in previous work, a construct (pAd2E2AL-CAT) has been used which consists of the late E2A promoter of adenovirus type 2 (Ad2) DNA fused to the prokaryotic gene for chloramphenicol acetyltransferase (CAT). This construct has been integrated in the non-methylated in the 5'-CCGG-3' premethylated form in the genomes of transgenic mice. DNA from various organs was analyzed by HpaII/MspI cleavage to assess the state of methylation in 5'-CCGG-3' sequences. The results demonstrate that the transgenic construct is in general stable. Non-methylated constructs have remained partly non-methylated for four generations or can become de novo methylated at all or most 5'-CCGG-3' sequences in the founder animal. Preimposed patterns of 5'-CCGG-3' methylation have been preserved for up to four generations beyond the founder animal. In the testes of two different founder animals and two F1 males, the transgenic DNA has become demethylated by an unknown mechanism. In all other organs, the transgenic DNA preserves the preimposed 5'-CCGG-3' methylation pattern. In the experiments performed so far we have not observed differences in the transmission of methylation patterns depending on whether the transgene has been maternally or paternally inherited. The 5'-CCGG-3' premethylated transgene does not catalyze CAT activity in several organs, except in one example of the testes of an animal in which the transgenic construct has become demethylated. In contrast, when the nonmethylated construct has been integrated and remained largely non-methylated, CAT activity has been detected in extracts from some of the organs.  相似文献   

3.
4.
The transgenic sequences in the mouse line TKZ751 are demethylated on a DBA/2 inbred strain background but become highly methylated at postimplantation stages in offspring of a cross with a BALB/c female. In the reciprocal cross the transgene remains demethylated suggesting that imprinted BALB/c methylation modifiers or egg cytoplasmic factors are responsible for this striking maternal effect on de novo methylation. Reciprocal pronuclear transplantation experiments were carried out to distinguish between these mechanisms. The results indicate that a maternally-derived oocyte cytoplasmic factor from BALB/c marks the TKZ751 sequences at fertilization; this mark and postzygotic BALB/c modifiers are both required for de novo methylation of the target sequences at postimplantation stages. Using genetic linkage analyses we mapped the maternal effect to a locus on chromosome 17. Moreover, seven postzygotic modifier loci were identified that increase the postimplantation level of methylation. Analysis of interactions between the maternal and the postzygotic loci shows that both are needed for de novo methylation in the offspring. The combined experiments thus reveal a novel epigenetic marking process at fertilization which targets DNA for later methylation in the foetus. The most significant consequence is that the genotype of the mother can influence the epigenotype of the offspring by this marking process. A number of parental and imprinting effects may be explained by this epigenetic marking.  相似文献   

5.
De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late-flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1 and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation.Key words: DNA methylation, Arabidopsis, de novo, genetic screen, whole-genome sequencing  相似文献   

6.
7.
《Epigenetics》2013,8(3):344-354
De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1, and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation.  相似文献   

8.
9.
《Epigenetics》2013,8(3):125-133
A synopsis will be presented of work on DNA methylation, the first epigenetic signal to be recognized. In the author´s laboratory, the following problems dealing with DNA methylation have been addressed over the past 32 years:(1) The de novo methylation of foreign DNA integrated into mammalian genomes. (2) Inverse correlations between promoter methylation and activity.(3) The long-term inactivating effect of site-specific promoter methylation. (4) Adenovirus E1 functions in trans and a strong enhancer in cis cancel the silencing effect of promoter methylation.(5) Frog virus 3, an iridovirus with a completely CpG-methylated genome. (6) Mechanisms of de novo methylation.(7) Different segments of the genome possess topical methylation memories.(8) Consequences of foreign DNA insertion into mammalian genomes: alterations of DNA methylation in cis and trans.(9) The epigenetic status of an adenovirus transgenome in Ad12-transformed hamster cells. (10) Cell type-specific patterns of DNA methylation: interindividual concordance in the human genome.  相似文献   

10.
Phenotypic variation in a genetically identical population of mice.   总被引:1,自引:0,他引:1       下载免费PDF全文
The parental alleles of an imprinted gene acquire their distinctive methylation patterns at different times in development. For the imprinted RSVIgmyc transgene, methylation of the maternal allele is established in the oocyte and invariably transmitted to the embryo. In contrast, the methylation of the paternal allele originates during embryogenesis. Here, we show that the paternal methylation pattern among mice with identical genetic backgrounds is subject to extensive variation. In addition to this nongenetic variation, the process underlying RSVIgmyc methylation in the embryo is also subject to considerable genetic regulation. The paternal transgene allele is highly methylated in an inbred C57BL/6J strain, whereas it is relatively undermethylated in an inbred FVB/N strain. Individual methylation patterns of paternal alleles, and therefore all of the variation (nongenetic and genetic) in methylation patterns within an RSVIgmyc transgenic line, are established in early embryogenesis. For each mouse, the paternal RSVIgmyc allele is unmethylated at the day-3.5 blastocyst stage, and the final, adult methylation pattern is found no later than day 8.5 of embryogenesis. Because of the strong relationship between RSVIgmyc methylation and expression, the variation in methylation is also manifest as variation in transgene expression. These results identify embryonic de novo methylation as an important source of both genetic and nongenetic contributions to phenotypic variation and, as such, further our understanding of the developmental origin of imprinted genes.  相似文献   

11.
Ssm1 is responsible for the mouse strain-specific DNA methylation of the transgene HRD. In adult mice of the C57BL/6 (B6) strain, the transgene is methylated at essentially all CpGs. However, when the transgene is bred into the DBA/2 (D2) strain, it is almost completely unmethylated. Strain-specific methylation arises during differentiation of embryonic stem (ES) cells. Here we show that Ssm1 causes striking chromatin changes during the development of the early embryo in both strains. In undifferentiated ES cells of both strains, the transgene is in a chromatin state between active and inactive. These states are still observed 1 week after beginning ES cell differentiation. However, 4 weeks after initiating differentiation, in B6, the transgene has become heterochromatic, and in D2, the transgene has become euchromatic. HRD is always expressed in D2, but in B6, it is expressed only in early embryos. The transgene is already more methylated in B6 ES cells than in D2 ES cells and becomes increasingly methylated during development in B6, until essentially all CpGs in the critical guanosine phosphoribosyl transferase core are methylated. Clearly, DNA methylation of HRD precedes chromatin compaction and loss of expression, suggesting that the B6 form of Ssm1 interacts with DNA to cause strain-specific methylation that ultimately results in inactive chromatin.  相似文献   

12.
Cao X  Jacobsen SE 《Current biology : CB》2002,12(13):1138-1144
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, and CHROMOMETHYLASE 3 (CMT3), which maintains CpNpG (N = A, T, C, or G) methylation and is unique to the plant kingdom. Here we describe loss-of-function mutations in the Arabidopsis DOMAINS REARRANGED METHYLASE (DRM) genes and provide evidence that they encode de novo methyltransferases. drm1 drm2 double mutants retained preexisting CpG methylation at the endogenous FWA locus but blocked de novo CpG methylation that is normally associated with FWA transgene silencing. Furthermore, drm1 drm2 double mutants blocked de novo CpNpG and asymmetric methylation and gene silencing of the endogenous SUPERMAN (SUP) gene, which is normally triggered by an inverted SUP repeat. However, drm1 drm2 double mutants did not show reactivation of previously established SUPERMAN epigenetic silenced alleles. Thus, drm mutants prevent the establishment but not the maintenance of gene silencing at FWA and SUP, suggesting that the DRMs encode the major de novo methylation enzymes affecting these genes.  相似文献   

13.
《Epigenetics》2013,8(6):404-414
Polycomb-mediated gene silencing and DNA methylation underlie many epigenetic processes important in normal development as well as in cancer. An interaction between EZH2 of the Polycomb repressive complex 2 (PRC2), which trimethylates lysine 27 on Histone 3 (H3K27me3), and all three DNA methyltransferases (DNMTs) has been demonstrated, implicating a role for PRC2 in directing DNA methylation. Interestingly, however, the majority of H3K27me3 marked genes lack DNA methylation in ES cells, indicating that EZH2 recruitment may not be sufficient to promote DNA methylation. Here, we employed a Gal4DBD/gal4UAS-based system to directly test if EZH2 binding at a defined genomic site is sufficient to promote de novo DNA methylation in a murine erythroleukaemia cell line. Targeting of a Gal4DBD-EZH2 fusion to an intergenic transgene bearing a gal4 binding-site array promoted localized recruitment of SUZ12 and BMI1, subunits of PRC2 and PRC1, respectively, and deposition of H3K27me3. Further analysis of the H3K27me3-marked site revealed the persistence of H3K4me2, a mark inversely correlated with DNA methylation. Strikingly, while DNMT3a was also recruited in an EZH2-dependent manner, de novo DNA methylation of the transgene was not observed. Thus, while targeting of EZH2 to a specific genomic site is sufficient for recruitment of DNMT3a, additional events are required for de novo DNA methylation.  相似文献   

14.
15.
A DNA target of 30 bp is sufficient for RNA-directed DNA methylation   总被引:11,自引:2,他引:9       下载免费PDF全文
In higher plants, RNA-DNA interactions can trigger de novo methylation of genomic sequences via a process that is termed RNA-directed DNA methylation (RdDM). In potato spindle tuber viroid (PSTVd)-infected tobacco plants, this process can potentially lead to methylation of all C residues at symmetrical and nonsymmetrical sites within chromosomal inserts that consist of multimers of the 359-bp-long PSTVd cDNA. Using PSTVd cDNA subfragments, we found that genomic targets with as few as 30 nt of sequence complementarity to the viroid RNA are detected and methylated. Genomic sequencing analyses of genome-integrated 30- and 60-bp-long PSTVd subfragments demonstrated that de novo cytosine methylation is not limited to the canonical CpG, CpNpG sites. Sixty-base-pair-long PSTVd cDNA constructs appeared to be densely methylated in nearly all tobacco leaf cells. With the 30-bp-long PSTVd-specific construct, the proportion of cells displaying dense transgene methylation was significantly reduced, suggesting that a minimal target size of about 30 bp is necessary for RdDM. The methylation patterns observed for two different 60-bp constructs further suggested that the sequence identity of the target may influence the methylation mechanism. Finally, a link between viroid pathogenicity and PSTVd RNA-directed methylation of host sequences is proposed.  相似文献   

16.
17.
M Okano  D W Bell  D A Haber  E Li 《Cell》1999,99(3):247-257
The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting blocks de novo methylation in ES cells and early embryos, but it has no effect on maintenance of imprinted methylation patterns. Dnmt3a and Dnmt3b also exhibit nonoverlapping functions in development, with Dnmt3b specifically required for methylation of centromeric minor satellite repeats. Mutations of human DNMT3B are found in ICF syndrome, a developmental defect characterized by hypomethylation of pericentromeric repeats. Our results indicate that both Dnmt3a and Dnmt3b function as de novo methyltransferases that play important roles in normal development and disease.  相似文献   

18.
Screening of animals to detect the presence of integrated DNA sequences is an essential component of transgenic mouse generation. Rapid and sensitive detection techniques to facilitate identification of transgenic animals for biological studies or subsequent breeding programs are desirable. Most transgenics are generated on F1 backgrounds, thus determination of the histocompatibility status of neonates provides important diagnostic information for establishing congenic colonies. We describe the application of two assays, in vitro DNA amplification using the polymerase chain reaction (PCR) and fluorescence in situ hybridization with biotinylated DNA probes, to facilitate rapid detection of transgenes and their chromosomal integration patterns in young mice. A noninvasive PCR-based assay to detect the transgene in DNA contained in detergent-extracted hair follicles was developed for rapid screening. A total of 147 mice derived from F2, F3, and F4 generations of C57BL x F1 (globin transgenics) were assayed to determine whether they carried a globin transgene. Characterization of animals by PCR-based amplification of the transgene was compared with that obtained using standard Southern analysis of DNA extracted from tails. Categorization of animals as positive (carrying the transgene) or negative using PCR was performed successfully in the initial assay with 95% of the animals. Fluorescence in situ hybridization with a DNA probe showing homology with a portion of the transgene was performed on metaphase and interphase cells to determine the integration pattern of the transgene. Our data showed that the transgene was integrated in a single chromosome. These techniques should facilitate rapid identification of transgenic animals and characterization of the genomic transgene integration patterns.  相似文献   

19.
EVI1 has pleiotropic functions during murine embryogenesis and its targeted disruption leads to prenatal death by severely affecting the development of virtually all embryonic organs. However, its functions in adult tissues are still unclear. When inappropriately expressed, EVI1 becomes one of the most aggressive oncogenes associated with human hematopoietic and solid cancers. The mechanisms by which EVI1 transforms normal cells are unknown, but we showed recently that EVI1 indirectly upregulates self-renewal and cell-cycling genes by inappropriate methylation of CpG dinucleotides in the regulatory regions of microRNA-124-3 (miR-124-3), leading to the repression of this small gene that controls normal differentiation and cell cycling of somatic cells. We used the regulatory regions of miR-124-3 as a read-out system to investigate how EVI1 induces de novo methylation of DNA. Here we show that EVI1 physically interacts with DNA methyltransferases 3a and 3b (Dnmt3a/b), which are the only de novo DNA methyltransferases identified to date in mouse and man, and that it forms an enzymatically active protein complex that induces de novo DNA methylation in vitro. This protein complex targets and binds to a precise region of miR-124-3 that is necessary for repression of a reporter gene by EVI1. Based on our findings, we propose that in cooperation with Dnmt3a/b EVI1 regulates the methylation of DNA as a sequence-specific mediator of de novo DNA methylation and that inappropriate EVI1 expression contributes to carcinogenesis through improper DNA methylation.  相似文献   

20.
Sachan M  Raman R 《Gene》2008,416(1-2):22-29
We have studied the dynamics of de novo DNA methylation of 16 contiguous CpGs in the non-CpG island-coding region of the proto-oncogene c-fos during mouse development by Na-bisulfite sequencing. Methylation commences from 16.5 dpc and occurs in stepwise-manner. In liver 7 sites are methylated between 16.5 dpc and day 5 after birth, but all the sites are completely methylated on 20 dpp and remain so in the adult liver. The present study provides evidence that (1) pattern of methylation of c-fos is distinct from those DNA sequences which methylate pre- and post-implantation, both in terms of the timing and spreading, and (2) spacing of CpGs is an important factor in determining the course of methylation. We suggest that there could be other isoforms of Dnmtases for the c-fos like embryonic genes, not only because they methylate later in development but also because of the difference in kinetics of the reaction, and that the nucleation of certain methylated sites facilitate methylation of neighbouring sites and their maintenance in subsequent cell generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号