首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two natural aphid enemies, adult Coccinella septempunctata Linneaus, a predator, and Aphidius rhopalosiphi de Stefani Perez, a parasitoid, on spread of barley yellow dwarf virus (BYDV) transmitted by the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus) were studied under laboratory conditions. Predators or parasitoids were introduced to trays of durum wheat seedlings and the patterns of virus infection were observed after two, seven and 14 days of exposure. More plants were infected with BYDV in control trays without A. rhopalosiphi than in trays with the parasitoid present, both seven and 14 days after the introduction of parasitoids. Patterns of virus infection were found to be similar over time in trays with a parasitoid present and in control trays. More plants were infected in trays with C. septempunctata present than in control trays, both two and seven days after the introduction of the coccinellid. The spread of virus infections progressed differently over time for the two treatments (predator and parasitoid), differences between treatments being most marked after two days and seven days, when more plants exposed to predators but fewer exposed to parasitoids were infected with BYDV compared to their respective controls. However, by the 14th day 88% of all plants were infected and there was no significant difference between the two treatments. The role of natural enemies in spread of BYDV is discussed.  相似文献   

2.
Five spring barleys, grown either in pots out of doors or in the field, were inoculated with barley yellow dwarf virus (BYDV) using 5, 10, 20 or 50 infective aphids (Rhopalosiphum padi) per plant. Control plants of each variety received no aphids. Infection with all aphid numbers had highly significant adverse effects on all varieties except Cb 1029, an early maturing BYDV-resistant barley of Ethiopian origin. 12583 Co, a locally bred, late maturing barley possessing the same resistance gene as Cb 1029 suffered more in a pot experiment, but less than three susceptible varieties all of which were severely damaged even when few infective aphids were used. Progressive effects with increasing aphid numbers, indicative of dosage response, occurred in some varieties. These effects included delay in heading and increased stunting, but not less yield. In Cb 1029, BYDV infection caused a reduction in the number of heads per plant, but this was partly compensated for by an increase in the number of grains per head. Conversely, BYDV infection in 12583 Co caused an increase in the number of heads, partly offset by a decrease in the number of Brains tier head.  相似文献   

3.
Two approaches based on the concept of a vector population index are considered as possible deterministic elements for an empirical forecast of barley yellow dwarf virus (BYDV) in autumn sown cereals. The first, an aerial vector index, is a further elaboration of the infectivity index proposed by Plumb, Lennon & Gutteridge (1981), which assumes that virus damage is a function of the number of infective migrant alatae of the two main aphid vectors, Rhopalosiphum padi L. and Sitobion avenae F., integrated over time from crop planting or emergence. The new formulation, however, excludes holocyclic alate morphs (i.e. males and gynoparae) of the former species, which, although generally abundant in autumn, are nevertheless perceived as relatively unimportant virus vectors since they colonise only the alternative woody host, Prunus padus (the bird-cherry tree). The second approach, a crop vector index, is a more fundamental departure which argues that field populations of viruliferous aphids, both alatae and apterae, which have already colonised cereals, may be a better criterion of potential virus spread than the density of aerial migrant vectors. This index retains a similar integral form, but evaluates crop exposure to BYDV as accumulated infectious aphid-days. A method is described whereby this function can be derived from irregular or infrequent aphid samples in the crop. Both methods, unlike Plumb's (1976) original concept, produced indices which were significantly related to subsequent virus infection and yield loss in winter barley at Long Ashton (S.W. England, UK), 1978–1986. The best models were obtained with the crop vector index, fitted to observed virus infection by generalised linear regression using a complementary log-log link function, or to observed yield loss by simple linear regression using a log transformation of yield (r = 0.84 in each case; compared with r-values > 0.65 for the aerial vector index, and > 0.35 for Plumb's (1976) index). However, the residual errors and hence confidence limits of these fitted regressions were too large for predicting damage that was significantly less than a reasonable economic damage threshold for BYDV control. Analyses of the separate components of each index showed a good general relationship between aphid infectivity and the severity of crop infection, confirming the epidemiological importance of this factor. The functional expressions of aphid density, however, were not significant. This evident weakness in the models, and alternative approaches to BYDV forecasting are discussed.  相似文献   

4.
The ability of seven aphid species, collected in west-central Morocco, to transmit barley yellow dwarf virus (BYDV) was determined. Aphids were either collected from grasses showing symptoms of BYDV infection or were allowed acquisition access to plants infected with a PAV-like isolate of BYDV before transfer to oat test plants. BYDV transmission by six of the seven aphid species was confirmed by ELISA test; only Melanaphis donacis failed to transmit. The six newly defined BYDV vector species brings the total known to occur in Morocco to ten.  相似文献   

5.
A two year experiment was conducted in winter wheat infested with black-grass. In the first year black-grass was either allowed to develop and shed seed freely or was completely controlled by herbicides. In the second year straw was either burnt or removed by baling and three cultivation systems were compared – ploughing, tine cultivations and direct drilling. No black-grass herbicides were applied in the second year. The presence of seeds shed in the previous crop greatly influenced the black-grass infestation in the direct drilled crop where it was calculated that 80–90% of plants were derived from these recently shed seeds. In the crop established after ploughing, the black-grass infestation was unaffected by seed production in the previous crop. Tine cultivations gave results similar to those found with direct drilling. It is suggested that these differences between cultivations were due to the presence of old seeds in the soil which were brought up to the soil surface by ploughing, but not by cultivations which did not invert the soil. Straw burning destroyed many freshly shed seeds on the soil surface and resulted in less black-grass in the crop although the effect tended to be masked by cultivations. The practical implications of the results are discussed.  相似文献   

6.
In the Rennes basin, Rhopalosiphum padi is anholocyclic and represents more than 90% of suction trap catches of potential vectors of barley yellow dwarf virus (BYDV) during autumn. From 1983 to 1987 the possibility of predicting the risk of BYDV infection of batches of barley test seedlings (sampling units) exposed each week from September to December near a 12.2 m high suction trap was investigated. Three kinds of variables were checked as possible predictors: weekly mean or maximum temperatures; weekly catches of R. padi (including or excluding males); and percentage of sampling units infested by aphids. Three contrasting examples were observed: during the first three years (1983–1985), infection was high and its change with time followed temperature, aphid catches and plant infestation changes; in 1986, high numbers of aphids caught and a high proportion of plants infested resulted in only low infection and in 1987, both infestation and infection were very low. Simple linear regression analysis showed that the more reliable predictors of infection were the proportion of infested plants and to a lesser extent the numbers of trapped aphids. Multiple linear regressions including either of the three groups of ‘predicting’ variables did not result in any improvement in the prediction. At a practical level, the use of counts of aphid catches would seem a better compromise between accuracy and consistency of prediction and ease of gathering data than that of plant infestation but any significant improvement of the prediction should be sought in an early estimate of the amount of virus available to aphids before they colonise the plants.  相似文献   

7.
Data from bioassays of field collected aphids, barley indicator plants exposed to natural conditions, and various types of aphid traps were used to describe the spread of barley yellow dwarf virus (BYDV) in wheat and barley near Prosser, Washington. Bioassays were also used to assess the relative importance of local vector species. Of alate aphids collected from grain in the 1982 and 1983 fall migration seasons, 3.4–14–5% transmitted BYDV. Data from concurrent and post-migration assays of resident aphids (apterae and nymphs) reflected an increase in the proportion of infected plants in the field. Maximum increase in the percentage of viruliferous aphids occurred in late November and December of 1982 and November of 1983. The 1982 increase occurred after aphid flights had ceased for the year, suggesting active secondary spread. Collections in pitfall traps and infected trap plants from November to February confirmed aphid activity and virus spread. Rhopalosiphum padi was the most important vector in central Washington in 1982 and 1983 because of its abundance and relative BYDV transmission efficiency. Metopolophium dirhodum was more winter-hardy than R. padi and equal to R. padi in its efficiency as a vector; however, it was not as abundant as R. padi except during the mild winter of 1982–83, when it was a major contributor to secondary spread. Sitobion avenae may be important in years when it is abundant, but it was only a quarter as efficient as R. padi. Rhopalosiphum maidis was a much less efficient vector than R. padi and it only reached high populations in late autumn barley.  相似文献   

8.
Resistance to infection by barley yellow dwarf virus (BYDV) has been transferred to the winter-hardy barley cv. Vixen. The effects of various sowing and inoculation dates on this resistance have been studied at two levels of BYDV infection. At levels most likely to be encountered in the field cv. Vixen suffered only slight yield losses and even under the most extreme conditions consistently yielded more than the susceptible cv. Igri. Comparison of the range of measurements used to determine the effects of BYDV infection showed that assessment of resistance to BYDV in field-grown winter barleys is most reliably based on yield measurements.  相似文献   

9.
The soil-borne barley yellow mosaic virus disease (BaMMV, BaYMV, BaYMV-2) and the aphid-transmitted barley yellow dwarf virus (BYDV) are serious threats to winter barley cultivation. Resistance to barley yellow mosaic virus disease has been identified in extensive screening programmes and several recessive resistance genes have been mapped, e.g. rym4, rym5, rym9, rym11, rym13. In contrast to barley yellow mosaic virus disease, no complete resistance to BYDV is known in the barley gene pool, but tolerant accessions have been identified and QTL for BYDV-tolerance have been detected on chromosomes 2HL and 3HL. The use of resistance and tolerance in barley breeding can be considerably improved today by molecular markers (RFLPs, RAPDs, AFLPs, SSRs, STSs, SNPs), as they facilitate (i) efficient genotyping and estimation of genetic diversity; (ii) reliable selection on a single plant level independent of symptom expression in the field (iii) acceleration of back crossing procedures; (iv) pyramiding of resistance genes; (v) detection of QTL and marker-based combination of positive alleles; and (vi) isolation of resistance genes via map-based cloning.  相似文献   

10.
We studied the effects of fungal endophyte infection of meadow ryegrass (Lolium pratense=Festuca pratensis) on the frequency of the barley yellow dwarf virus (BYDV). The virus is transferred by aphids, which may be deterred by endophyte-origin alkaloids within the plant. In our experiment, we released viruliferous aphid vectors on endophyte-infected and endophyte-free plants in a common garden. The number of aphids and the percentage of BYDV infections were lower in endophyte-infected plants compared to endophyte-free plants, indicating that endophyte infection may protect meadow ryegrass from BYDV infections.  相似文献   

11.
The tolerance of spring and winter varieties of wheat, oats and barley to infection by barley yellow dwarf virus (BYDV) was examined in glasshouse tests. Severely affected plants were stunted and grain yields were considerably decreased because of decreases in both ear number and numbers and sizes of grains. Winter barley varieties were very susceptible and many were killed by BYDV infection. The winter wheat varieties were more widely tolerant than those of oats and barley. Individual seedling symptoms, although correlated with reductions in yield, could not be relied upon for accurate classification of all varieties in order of their susceptibility to infection. Symptoms of seedling infection incorporated into an index of infection permit estimates to be made o eventual decreases in yield by applying the formula DY = 1.4 × (SH+LA+LL)+18. Thus decrease in grain yield (DY) can be related to decreases in height (SH) and leaf length (LL) and increases in leaf area discoloured (LA) in seedling plants infected with BYDV.  相似文献   

12.
Properties and isolates of barley yellow dwarf virus   总被引:2,自引:0,他引:2  
Barley yellow dwarf virus is persistently transmitted by a number of aphid species of which three, Rhopalosiphum padi, Sitobion avenae and Metopolophium dirhodum, are common in most years. Other aphids may be locally important. Isolates of the virus differ in their virulence and geographical distribution and are not transmitted equally well by all aphid vectors. Isolates with similar properties are grouped into strains according to their transmission by vectors and their severity. Changes in strain and aphid occurrence from year to year alter the incidence of virus and its effect on yield. These changes emphasize the need for detailed knowledge of cereal aphid biology and epidemiology of BYDV before effective control can be used.  相似文献   

13.
In three separate experiments, the upper leaf surface of the fifth formed leaf of wheat cv. Highbury, the fourth and fifth leaves of barley cv. Julia and the third and fourth leaves of oat cv. Mostyn were inoculated in a spore settling tower with wheat brown rust (Puccinia recondita f. sp. tritici), barley brown rust (P. hordei) or oat crown rust (P. coronata f. sp. avenae), respectively. Fewer pustules developed on distal portions of leaves of plants infected with barley yellow dwarf virus (BYDV) than on similar portions of leaves from virus-free plants. There were no significant differences in the number of pustules on proximal leaf portions. In barley and oats, the number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. In wheat, symptoms of BYDV were mild and leaves were little affected by yellowing. The latent period of rust on wheat and oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. In other experiments, BYDV reduced the yield of wheat and oats by 44% and 66%, respectively, while BYDV-infected barley was almost sterile. The appropriate rust reduced the yield of wheat, barley and oats by 33%, 13% and 86%, respectively. When infected with both BYDV and rust, yield of wheat and oats was reduced by 63% and 91%, respectively. Neither BYDV nor rust affected the percentage crude protein content of wheat grain, nor did rust affect that of barley. In oats, BYDV and rust each significantly increased crude protein of grain, but rust infection of BYDV-infected plants tended to reduce it.  相似文献   

14.
Barley varieties were most tolerant to infection with barley yellow dwarf virus (BYDV) when they grew rapidly, whether the rate of growth was determined by manipulation of the environment or by the innate genetic constitution of the host. A specific, incompletely dominant gene conditioning a high level of tolerance to the virus in certain rapidly growing genotypes in which it occurred naturally, failed to do so when transferred to slower growing genotypes. However, reintroduction into genotypes capable of rapid growth led to full restoration of the gene's effectiveness. Virus-free aphids recovered BYDV less readily from quick- than from slow-growing genotypes, all homozygous for the tolerance gene.  相似文献   

15.
Prior infection of both wheat and barley plants by BYDV predisposed their ears to infection by Cladosporium spp. and Verticillium spp. Aphids and honeydew increased the incidence of Cladosporium on wheat ears but not on barley. This difference between crops was attributed to the larger number ot aphids on the wheat. In the glasshouse, aphids and honeydew, but not honeydew alone, increased Cladosporium populations.  相似文献   

16.
Yield loss in soft red winter wheat, Triticum aestivum L., caused by aphid-transmitted barley yellow dwarf virus (family Luteoviridae, genus Luteovirus, BYDV) was measured over a 2-yr period in central Missouri. Rhopalosiphum padi (L.) was the most common and economically important species, accounting for > 90% of the total aphids. Schizaphis graminum (Rondani), Rhopalosiphum maidis (Fitch), and Sitobion avenae (F.) made up the remainder of the aphids. Aphid numbers peaked at wheat stem elongation in 2003 with 771 R. padi per meter-row. In the 2003-2004 growing season, aphid numbers averaged seven aphids per meter-row in the fall and peaked at 18 aphids per meter-row at jointing. Wheat grain yield was reduced 17 and 13% in 2003 and 2004, respectively. Thousand kernel weights were reduced 10 and 5% in the untreated plots compared with the treated control in 2003 and 2004, respectively. Padi avenae virus was the predominate strain, accounting for 81 and 84% of the symptomatic plots that tested positive for BYDV in 2003 and 2004. Our results indicate that economic thresholds for R. padi are 16 aphids per meter-row in the fall and 164 aphids per meter-row at jointing.  相似文献   

17.
Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 ± 1°C, 65% ± 5% relative humidity and a photoperiod of 16 : 8 h (L : D) were compared. The plants were either: (i) infected with the Barley yellow dwarf virus (BYDV); (ii) not infected with virus but previously infested with aphids; or (iii) healthy barley plants, which were not previously infested with aphids. Generally, both color morphs of S. avenae performed significantly better when fed on BYDV‐infected plants than on plants that were virus free but had either not been or had been previously infested with aphids. Furthermore, when fed on BYDV‐infected plants, green S. avenae developed significantly faster and had a significantly shorter reproductive period than the brown color morph. There were no significant differences in this respect between the two color morphs of S. avenae when they were reared on virus‐free plants that either had been or not been previously infested with aphids. These results indicate that barley infected with BYDV is a more favorable host plant than uninfected barley for both the color morphs of S. avenae tested, particularly the green color morph.  相似文献   

18.
The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing.  相似文献   

19.
The Yd2 gene for "resistance" to barley yellow dwarf virus (BYDV) has been widely used in barley ( Hordeum vulgare ). We have tested Australian isolates of BYDV of varying severity against barley genotypes with and without the Yd2 gene and report here a positive relationship between symptoms and virus levels determined by ELISA. Cultivar Shannon is the result of backcrossing the resistant line CI 3208 to cultivar Proctor, a susceptible line. It appears to be intermediate in reaction to BYDV between Proctor and CI 3208, although it carries the major gene, Yd2. Unlike the whole plant studies, no significant differences were observed with regard to the ability of protoplasts derived from these various genotypes to support BYDV replication. It is therefore demonstrated for the first time that the Yd2 gene is not among the small number of resistance genes which are effective against virus replication in isolated protoplasts.  相似文献   

20.
Barley yellow dwarf (BYD) is one of the most common diseases of cereal crops, caused by the phloem‐limited, cereal aphid‐borne Barley yellow dwarf virus (BYDV) (Luteoviridae). Delayed planting and controlling aphid vector numbers with insecticides have been the primary approaches to manage BYD. There is limited research on nitrogen (N) application effects on plant growth, N status, and water use in the BYDV pathosystem in the absence of aphid control. Such information will be essential in developing a post‐infection management plan for BYDV‐infected cereals. Through a greenhouse study, we assessed whether manipulation of N supply to BYDV‐infected winter wheat, Triticum aestivum L. (Poaceae), in the presence or absence of the aphid vector Rhopalosiphum padi L. (Hemiptera: Aphididae), could improve N and/or water uptake, and subsequently promote plant growth. Similar responses of shoot biomass and of water and N use efficiencies to various N application rates were observed in both BYDV‐infected and non‐infected plants, suggesting that winter wheat plants with only BYDV infection may be capable of outgrowing infection by the virus. Plants, which simultaneously hosted aphids and BYDV, suffered more severe symptoms and possessed higher virus loads than those infected with BYDV only. Moreover, in plants hosting both BYDV and aphids, aphid pressure was positively associated with N concentration within plant tissue, suggesting that N application and N concentration within foliar tissue may alter BYDV replication indirectly through their influence on aphid reproduction. Even though shoot biomass, tissue N concentration, and water use efficiency increased in response to increased N application, decision‐making on N fertilization to plants hosting both BYDV and aphids should take into consideration the potential of aphid outbreak and/or the possibility of reduced plant resilience to environmental stresses due to decreased root growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号