首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从荧光假单胞菌TM5-2中得到一个含丙氨酸消旋酶基因的DNA片段(8.8kb),相邻的一个开读框(ORF)与甘氨酸/D-型氨基酸氧化酶基因相似。该ORF经过克隆、表达,并没有检测到甘氨酸/D-型氨基酸氧化酶的活性,推导而得的氨基酸序列与D-型氨基酸脱氢酶序列比较发现,ORF含有D-型氨基酸脱氢酶的所有重要的保守序列。经TTC培养基鉴定,其具有D-型氨基酸脱氢酶的活性,并对一系列D-型氨基酸有作用,最佳作用底物是D-组氨酸。  相似文献   

2.
P Marcotte  C Walsh 《Biochemistry》1976,15(14):3070-3076
Proparglyglycine (2-amino-4-pentynoate) and vinylglycine (2-amino-3-butenoate) have been examined as substrates and possible inactivators of two flavo enzymes, D-amino acid oxidase from pig kidney and L-amino acid oxidase from Crotalus adamanteus venom. Vinylglycine is rapidly oxidized by both enzymes but only L-amino acid oxidase is inactivated under assay conditions. The loss of activity probably involves covalent modification of an active site residue rather than the flavin adenine dinucleotide coenzyme and occurs once every 20000 turnovers. We have confirmed the recent observation (Horiike, K, Hishina, Y., Miyake, Y., and Yamano, T. (1975) J, Biochem. (Tokyo), 78, 57) that D-proparglglycine is oxidized with a time-dependent loss of activity by D-amino acid oxidase and have examined some mechanistic aspects of this inactivation, The extent of residual oxidase activity, insensitive to further inactivation, is about 2%, at which point 1.7 labels/subunit have been introduced with propargly[2-14C]glycine as substrate. L-Proparglyclycine is a substrate but not an inactivator of L-amino acid oxidase and the product ahat accumulats in the nonnucleophilic N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer is acetopyruvate. In the presence of butylamine HCl, a species with lambdaman 317 nm (epsilon = 15 000) accumulates that may be a conjugated eneamine adduct. The same species accumulates from D-amino acid oxidase oxidation of D-propargylglycine prior to inactivation; the inactivated apo D-amino acid oxidase has a new peak at 317 nm that is probably a similar eneamine. A likely inactivating species is 2-keto-3,4-pentadienoate arising from facile rearrangement of the expected initial product 2-keto 4 pentynoate. Vinylglycine and proparglyglycine show inactivation specificity, then, for L-and D-amino acid oxidase, respectively.  相似文献   

3.
A procedure has been developed for the partial purification from Chlorella vulgaris of an enzyme which catalyzes the formation of HCN from D-histidine when supplemented with peroxidase of a metal with redox properties. Some properties of the enzyme are described. Evidence is presented that the catalytic activity for HCN formation is associated with a capacity for catalyzing the oxidation of a wide variety of D-amino acids. With D-leucine, the best substrate for O2 consumption, 1 mol of ammonia is formed for half a mol of O2 consumed in the presence of catalase. An inactive apoenzyme can be obtained by acid ammonium sulfate precipitation, and reactivated by added FAD. On the basis of these criteria, the Chlorella enzyme can be classified as a D-amino acid oxidase (EC 1.4.3.3). Kidney D-amino acid oxidase and snake venom L-amino acid oxidase, which likewise form HCN from histidine on supplementation with peroxidase, have been compared with the Chlorella D-amino acid oxidase. The capacity of these enzymes for causing HCN formation from histidine is about proportional to their ability to catalyze the oxidation of histidine.  相似文献   

4.
We report the presence of a new subcompartment in rat liver peroxisomal matrix in which only D-amino acid oxidase is localized and other matrix enzymes are absent. By electron microscopic observation, the rat liver peroxisome has generally been considered to consist of a single limiting membrane, an electron-dense crystalline core, and a homogeneous matrix. Immunohistochemical staining for D-amino acid oxidase by the protein A-gold technique revealed the presence of a small area in the matrix that was immunoreactive for the enzyme and was less electron-dense than the surrounding matrix. The localization of D-amino acid oxidase in this small area of the peroxisomal matrix was confirmed by immunoelectron microscopy on freeze-substituted tissues processed without chemical fixation. To analyze the characteristics of the electron-lucent area, immunoreactivity for various peroxisomal enzymes, including catalase, acyl-CoA oxidase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein, 3-ketoacyl-CoA thiolase, L-alpha-hydroxy acid oxidase (isozyme B), and glycolate oxidase (isozyme A), was assayed. The electron-lucent area was negative for all of these. By double staining for D-amino acid oxidase and catalase, using colloidal gold particles of different sizes, these enzymes were shown to be located in separate areas in the matrix.  相似文献   

5.
The effect of ionic strength and pH on the release of some enzymes of the matrix of peroxisomes in rat's liver was studied. Catalase, L ALpha-hydroxy acid oxidase, isocitrate dehydrogenase, glycerophosphate dehydrogenase and lactate dehydrogenase were easily released from the particles during their lysis and treatment with 0.16 M KCl, whereas urate oxidase, NADH cytochrome c reductase and D-amino acid oxidase were not solubilized. After the solubilization of peroxisomal membrane by 0.2% Triton X-100, the remaining core contained about 50% amino acid oxidase activity, and had 1.28--1.30 g/cm3 density. These results suggest that D-amino acid oxidase associates with urate oxidase in the peroxisomal core.  相似文献   

6.
S F Gilbert  B R Migeon 《Cell》1975,5(1):11-17
A nutrient medium has been developed to enable the growth of normal epithelial cells while selectively inhibiting fibroblast proliferation. In this medium, D-valine is substituted for L-valine; and only those cells containing D-amino acid oxidase can convert the D-amino acid into its essential L-enantiomer. The ability to select for cells with this enzyme has enabled us to maintain epithelial cell populations free from fibroblast overgrowth. The presence of D-amino acid oxidase has been histochemically confirmed in the epithelial cells selected from renal cell suspensions and explants. The ability to proliferate in the selective medium is transmitted to the clonal progeny of these cells. Moreover, epithelial cell proliferation of this medium indicates the presence of D-amino acid oxidase, which we have detected in tissues where it had not previously been reported-fetal human kidney, lung, and cord. Fibroblasts will not grow in the selective medium, but will proliferate normally if the product of the D-amino acid oxidase reaction is supplied.  相似文献   

7.
The present study was undertaken to separate peroxisomes of the dog kidney cortex by the methods of discontinuous sucrose density gradient and zonal centrifugation. The separation of subcellular particles was evaluated by measuring the activities of reference enzymes, beta-glycerophosphatase for lysosomes, succinate dehydrogenase for mitochondria, glucose-6-phosphatase for microsomes, and catalase and D-amino acid oxidase for peroxisomes. The activities of D-amino acid oxidase and catalase were mainly observed in fractions 1 and 2 (1.6 and 1.7 M sucrose) obtained by discontinuous sucrose density-gradient centrifugation. Small amounts of acid phosphatase and succinate dehydrogenase contaminated these fractions. Considerably higher activity of catalase was determined in the supernatant, while D-amino acid oxidase showed a lower activity. By the method of zonal centrifugation, the highest specific activities of catalase and D-amino acid oxidase were found in fraction 50 (1.73 M sucrose) with no succinate dehydrogenase, acid phosphatase or glucose-6-phosphatase activity. These results suggested that peroxisomes of dog kidney cortex were clearly separated in 1.73 M sucrose from mitochondria, lysosomes and microsomes by zonal centrifugation.  相似文献   

8.
Several substrates and roles have been proposed for D-amino acid oxidase (E.C. 1.4.3.3.); however, there is no proof that they possess the required characteristics to account for the ubiquity, large amounts and great activity of the enzyme as found in diverse cells and tissues. Based on the similar stereoposition of identically charged atoms and lateral side chain (R) with respect to the alpha-hydrogen atoms in beta-sheet conformation and in D-amino acids, it is proposed that its substrates may include several membrane-related proteins, partially in beta-sheet conformation, whose alpha-hydrogen atoms would be the real object of D-amino acid oxidase catalysis. A monooxygenase-like enzymatic activity of D-amino acid oxidase with these novel substrates is considered, for which the final products are hypothesized to be protein alpha-carbon hydroxyls resulting from the incorporation of one atom of oxygen into the substrate, the other being reduced to water. Alternatively, it is also proposed that D-amino acid oxidase (and possibly other monooxygenase enzymes) would have a hydroperoxide-synthetase activity. In this case, protein alpha-carbon hydroperoxide and not water, but another reduced molecule, would be the final products. The new enzymatic performances of D-amino acid oxidase and the possible role of its potential final products in redox and other biochemical processes are discussed.  相似文献   

9.
Enzymatic oxidation of L-homocysteine   总被引:1,自引:0,他引:1  
Homocyst(e)ine, a normal metabolite, accumulates in certain inborn errors of sulfur amino acid metabolism. Since many amino acids are converted by enzymatic oxidation and by transamination to the corresponding alpha-keto acid analogs and related products, which may exert inhibitory effects on metabolism, and because the alpha-keto acid analog of homocysteine has not yet been prepared, the enzymatic oxidation of homocysteine was investigated with the aim of obtaining alpha-keto-gamma-mercaptobutyric acid. Oxidation of DL-homocysteine by L-amino acid oxidase led to formation of at least seven products that react with 2,4-dinitrophenylhydrazine; of these, five were identified: alpha-keto-gamma-mercaptobutyrate, the mono and diketo analogs of homolanthionine, and the mono and diketo analogs of homocystine. In addition, one product was tentatively identified as alpha-ketomercaptobutyric acid gamma-thiolactone. In the course of this work alpha-keto-gamma-mercaptobutyrate was found to be a substrate of lactate dehydrogenase. L-Homocysteine and its alpha-keto acid analog were shown to be substrates of glutamate dehydrogenase and kidney glutamine transaminase. DL-Homocysteine reacts readily with alpha-keto acids to form stable hemithioketals, which were found to be substrates of L- and D-amino acid oxidases. A scheme is presented which integrates some of the complexities involved in the oxidation metabolism of homocyst(e)ine. The significance of these findings is considered in relation to the toxicity of homocysteine, which accumulates in certain pathological states.  相似文献   

10.
The contents of D-enantiomers of serine, alanine, proline, glutamate (glutamine) and aspartate (asparagine) were examined in the membrane fractions, soluble proteins and free amino acids from some species of archaea, Pyrobaculum islandicum, Methanosarcina barkeri and Halobacterium salinarium. Around 2% (D/D+L) of D-aspartate was found in the membrane fractions. In the soluble proteins, the D-amino acid content was higher in P. islandicum than that in the other archaeal cells: the concentrations in P. islandicum were 3 and 4% for D-serine and D-aspartate, respectively. High concentrations of free D-amino acids were found in P. islandicum and H. salinarium; the concentrations of D-serine (12-13%), D-aspartate (4-7%) and D-proline (3-4%) were higher than those of D-alanine and D-glutamate. This result showed a resemblance between these archaea and not bacterial, but eukaryotic cells. The presence of D-amino acids was confirmed by their digestion with D-amino acid oxidase and D-aspartate oxidase. The occurrence of D-amino acids was also confirmed by the presence of activities catalyzing catabolism of D-amino acids in the P. islandicum homogenate, as measured by 2-oxo acid formation. The catalytic activities oxidizing D-alanine, D-aspartate and D-serine at 90 degrees C were considerably high. Under anaerobic conditions, dehydrogenase activities of the homogenate were 69, 84 and 30% of the above oxidase activities toward D-alanine, D-aspartate and D-serine, respectively. Comparable or higher dehydrogenase activities were also detected with these D-amino acids as substrate by the reduction of 2, 6-dichlorophenolindophenol. No D-amino acid oxidase activity was detected in the homogenates of M. barkeri and H. salinarium.  相似文献   

11.
BACKGROUND/AIMS: The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared liver slices has not been previously reported. The present investigation compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activities in the oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared liver slices. METHODS: Vanillin, isovanillin or protocatechuic aldehyde was incubated with liver slices in the presence/absence of specific inhibitors of each enzyme, followed by HPLC. RESULTS: Vanillin was rapidly converted to vanillic acid. Vanillic acid formation was completely inhibited by isovanillin (aldehyde oxidase inhibitor), whereas disulfiram (aldehyde dehydrogenase inhibitor) inhibited acid formation by 16% and allopurinol (xanthine oxidase inhibitor) had no effect. Isovanillin was rapidly converted to isovanillic acid. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. Protocatechuic aldehyde was converted to protocatechuic acid at a lower rate than that of vanillin or isovanillin. Allopurinol only slightly inhibited protocatechuic aldehyde oxidation, isovanillin had little effect, whereas disulfiram inhibited protocatechuic acid formation by 50%. CONCLUSIONS: In freshly prepared liver slices, vanillin is rapidly oxidized by aldehyde oxidase with little contribution from xanthine oxidase or aldehyde dehydrogenase. Isovanillin is not a substrate for aldehyde oxidase and therefore it is metabolized to isovanillic acid predominantly by aldehyde dehydrogenase. All three enzymes contribute to the oxidation of protocatechuic aldehyde to its acid.  相似文献   

12.
Production of D-amino acid oxidase, L-aromatic aminotransferase and aromatic lactate dehydrogenase by several yeast species was examined. Of 16 strains tested, Trigonopsis variabilis and Rhodosporidium toruloides were found to be most suitable for D-amino acid oxidase production, T. variabilis and Brettanomyces anomalus for L-aromatic aminotransferase production, and Hansenula polymorpha, Cryptococcus terreus, and Candida maltosa for aromatic lactate dehydrogenase production. This selection is based on a high amount of enzyme activity as well as a broad enzyme specificity. The data will be reported here.  相似文献   

13.
The corneas of albino rabbits were irradiated (5 min exposure once a day) with UVB rays (312 nm) for 4 days (shorter procedure) or 8 days (longer procedure). The eyes were examined microbiologically and only the corneas of sterile eyes or eyes with non-pathogenic microbes were employed. Histochemically, the activities of reactive oxygen species (ROS)-generating oxidases (xanthine oxidase, D-amino acid oxidase and alpha-hydroxy acid oxidase) were examined in cryostat sections of the whole corneas. Biochemically, the activity of xanthine oxidoreductase/xanthine oxidase was investigated in the scraped corneal epithelium. UVB rays significantly changed enzyme activities in the corneas. In comparison to the normal cornea, where of ROS-generating oxidases only xanthine oxidase showed significant activity in the corneal epithelium and endothelium, D-amino acid oxidase was very low and alpha-hydroxy acid oxidase could not be detected at all, in the cornea repeatedly irradiated with UVB rays, increased activities of xanthine oxidase and D-amino acid oxidase were observed in all corneal layers. Only after the longer procedure the xanthine oxidase and D-amino acid oxidase activities were decreased in the thinned epithelium in parallel with its morphological disturbances. Further results show that the xanthine oxidase/xanthine oxidoreductase ratio increased in the epithelium together with the repeated irradiation with UVB rays. This might suggest that xanthine dehydrogenase is converted to xanthine oxidase. However, in comparison to the normal corneal epithelium, the total amount of xanthine oxidoredutase was decreased in the irradiated epithelium. It is presumed that xanthine oxidoreductase might be released extracellularly (into tears) or the enzyme molecules were denatured due to UVB rays (particulary after the longer procedure). Comparative histochemical and biochemical findings suggest that reactive oxygen species-generating oxidases (xanthine oxidase, D-amino acid oxidase) contribute to the corneal damage evoked by UVB rays.  相似文献   

14.
Triamcinoline acetonide (10 mg per kg of body weight a day) was administered to rabbit fed on a laboratory chow diet. The content of flavins in liver but not in kidney, muscle and brain started to decrease 24 h after a single dose. The activities of enzymes in the liver were determined: the activities of pyruvate dehydrogenase complex, lipoamide dehydrogenase (NADH:lipoamide oxidoreductase EC 1.6.4.3), NADH dehydrogenase (NADH : (acceptor) oxidoreductase EC 1.6.99.3) and D-amino acid oxidase (D-amino acid: oxygen oxidoreductase (deaminating) EC 1.4.3.3) were decreased but those of succinate dehydrogenase (succinate : (acceptor) oxidoreductase EC 1.3.99.1) and xanthine oxidase (xanthine : oxygen oxidoreductase EC 1.2.3.2) remained unchanged. The activities of enzymes in the kidney, however, remained unchanged except the decrease in the activity of pyruvate dehydrogenase complex.  相似文献   

15.
The use of L-glutamate dehydrogenase (GLUD) as a reagent in staining mixtures to detect the isozymes of enzymes which catalyze the production of ammonia has been investigated. Methods have been devised for the electrophoresis and detection, using GLUD, of seven enzymes: cytidine deaminase, adenosine deaminase, adenosine monophosphate deaminase, arginase, argininosuccinase, D-amino acid oxidase, and D-aspartate oxidase. GLUD-linked staining methods appear to be sensitive, specific, and of general application.  相似文献   

16.
The aim of our present research is to produce mutant forms of D-amino acid oxidase from Rhodotorula gracilis in order to determine D-amino acid content in different biological samples. During the past few years, our group has produced yeast D-amino acid oxidase variants with altered substrate specificity (e.g., active on acidic, or hydrophobic, or on all D-amino acids) both by rational design and directed evolution methods. Now, the kinetic constants for a number of amino acids (even for unnatural ones) of the most relevant D-amino acid oxidase variants have been investigated. This information constitutes the basis for considering potential analytical applications in this important field.  相似文献   

17.
A mixture of cysteamine and glyoxylate, proposed by Hamilton et al. to form the physiological substrate of hog kidney D-amino acid oxidase (Hamilton, G. A., Buckthal, D. J., Mortensen, R. M., and Zerby, K. W. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 2625-2629), was confirmed to act as a good substrate for the pure enzyme. As proposed by those workers, it was shown that the actual substrate is thiazolidine-2-carboxylic acid, formed from cysteamine and glyoxylate with a second order rate constant of 84 min-1 M-1 at 37 degrees C, pH 7.5. Steady state kinetic analyses reveal that thiazolidine-2-carboxylic acid is a better substrate at pH 8.5 than at pH 7.5. At both pH values, the catalytic turnover number is similar to that obtained with D-proline. D-Amino acid oxidase is rapidly reduced by thiazolidine-2-carboxylic acid to form a reduced enzyme-imino acid complex, as is typical with D-amino acid oxidase substrates. The product of oxidation was shown by NMR to be delta 2-thiazoline-2-carboxylic acid. Racemic thiazolidine-2-carboxylic acid is completely oxidized by the enzyme. The directly measured rate of isomerization of L-thiazolidine-2-carboxylic acid to the D-isomer was compared to the rate of oxidation of the L-isomer by D-amino acid oxidase. Their identity over the range of temperature from 2-30 degrees C established that the apparent activity with the L-amino acid can be explained quantitatively by the rapid, prior isomerization to D-thiazolidine-2-carboxylic acid.  相似文献   

18.
D-amino acid oxidase, a peroxisomal enzyme, and D-aspartate oxidase, a potential peroxisomal enzyme, share biochemical attributes. Both produce hydrogen peroxide in flavin-requiring oxidative reactions. Such similarities suggest that D-aspartate oxidase may also be localized to peroxisomes. Definitive identification of D-aspartate oxidase as a peroxisomal enzyme depends, however, on visualization at the electron microscopic level. Using incubation conditions shown to be specific for the enzyme in biochemical studies, this report extends the cytochemical localization of D-amino acid oxidase to bovine renal peroxisomes, and shows that D-aspartate can be oxidized by rat and bovine renal peroxisomes. An unexpected finding was the sensitivity of both D-amino acid oxidase activity (proline specific) and D-aspartate oxidase activity to inhibition by agents used in biochemical studies to discriminate between the two enzyme activities. Therefore, it is possible that, in the cytochemical system used in this study, (a) either D-proline and D-aspartate are substrates for only one enzyme or (b) the two enzymes have additional overlapping biochemical properties.  相似文献   

19.
The hexanol oxidation catalyzed by alcohol dehydrogenase from baker's yeast (YADH) has been investigated with two different forms of the biocatalyst: the isolated YADH as well as the YADH in the permeabilized whole cells. It was found that in this reaction, equilibrium is shifted to the reduction side. Hence, to increase the conversion it was necessary to regenerate NAD+. For that purpose, enzyme NADH oxidase isolated from Lactobacillus brevis was used. All biocatalysts were kinetically characterized. The overall reaction rate was described by the mathematical model which consisted of kinetics and balance equations. Due to the deactivation of NADH oxidase, only 50–58% hexanol was converted to hexanal in the batch reactor where the hexanol oxidation was catalyzed by isolated YADH. In the case of permeabilized baker's yeast cells, no enzyme deactivation occurred and 100% hexanol conversion in the hexanoic acid was detected.  相似文献   

20.
The PolytronR and Dounce homogenizers have been evaluated for preparation of homogenates of rat liver prior to isolation of subcellular fractions by differential centrifugation. Marker enzymes used to evaluate the subcellular fractions included cytochrome oxidase, monoamine oxidase, D-amino acid oxidase, acid phosphatase, glucose-6-phosphatase, ethyl morphine demethylase, and lactate dehydrogenase. No significant difference in the distribution of enzymes (percent recovery or specific activity) was observed between the two methods of homogenization. In addition, there were no significant differences in the ultrastructural appearances and respiratory control ratios of the mitochondrial fractions prepared by the two methods of homogenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号