首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Long interspersed nuclear element-1 (LINE-1 or L1) retrotransposons comprise a large fraction of the human and mouse genomes. The mobility of these successful elements requires the protein encoded by open reading frame-1 (ORF1p), which binds single-stranded RNA with high affinity and functions as a nucleic acid chaperone. In this report, we have used limited proteolysis, filter binding, and NMR spectroscopy to characterize the global structure of ORF1p and the three-dimensional structure of a highly conserved RNA binding domain. ORF1p contains three structured regions, a coiled-coil domain, a middle domain of unknown function, and a C-terminal domain (CTD). We show that high affinity RNA binding by ORF1p requires the CTD and residues within an amino acid protease-sensitive segment that joins the CTD to the middle domain. Insights in the mechanism of RNA binding were obtained by determining the solution structure of the CTD, which is shown to adopt a novel fold consisting of a three-stranded beta sheet that is packed against three alpha-helices. An RNA binding surface on the CTD has been localized using chemical shift perturbation experiments and is proximal to residues previously shown to be essential for retrotransposition, RNA binding, and chaperone activity. A similar structure and mechanism of RNA binding is expected for all vertebrate long interspersed nuclear element-1 elements, since residues encoding the middle, protease-sensitive segment, and CTD are highly conserved.  相似文献   

5.
6.
7.
A1 is a core protein of the eukaryotic heterogeneous nuclear ribonucleoprotein complex and is under study here as a prototype single-stranded nucleic acid-binding protein. A1 is a two-domain protein, NH2-terminal and COOH-terminal, with highly conserved primary structure among vertebrate homologues sequenced to date. It is well documented that the NH2-terminal domain has single-stranded DNA and RNA binding activity. We prepared a proteolytic fragment of rat A1 representing the COOH-terminal one-third of the intact protein, the region previously termed COOH-terminal domain. This purified fragment of 133 amino acids binds to DNA and also binds tightly to the fluorescent reporter poly(ethenoadenylate), which is used to access binding parameters. In solution with 0.41 M NaCl, the equilibrium constant is similar to that observed with A1 itself, and binding is cooperative. The purified COOH-terminal fragment can be photochemically cross-linked to bound nucleic acid, confirming that COOH-terminal fragment residues are in close contact with the polynucleotide lattice. These binding results with isolated COOH-terminal fragment indicate that the COOH-terminal domain in intact A1 can contribute directly to binding properties. Contact between both COOH-terminal domain and NH2-terminal domain residues in an intact A1:poly(8-azidoadenylate) complex was confirmed by photochemical cross-linking.  相似文献   

8.
9.
10.
The capsid (C) protein of alphaviruses consists of two protein domains: a serine protease at the COOH terminus and an NH2-terminal domain which is thought to interact with RNA in the virus nucleocapsid (NC). The latter domain is very rich in positively charged amino acid residues. In this work, we have introduced large deletions into the corresponding region of a full-length cDNA clone of Semliki Forest virus, expressed the transcribed RNA in BHK-21 cells, and monitored the autoprotease activity of C, the formation of intracellular NCs, and the release of infectious virus. Our results show that if the gene region encoding the whole NH2-terminal domain is removed, the expressed C protein fragment cannot assemble into NCs and virus particles but it is still able to function as an autoprotease. Thus, these results underline the general importance of the NH2-terminal domain in the virus assembly process and furthermore show that the serine protease domain can function independently of the NH2 terminus. Surprisingly, analysis of additional C protein deletion variants showed that not all of the NH2-terminal domain is required for virus assembly, but large deletions involving up to one-third of its positively charged residues are still compatible with NC and virus formation. The fact that so much flexibility is allowed in the structure of the NH2-terminal domain of C suggests that most of this region is involved in nonspecific interactions with the encapsidated RNA, probably through its positively charged amino acid residues.  相似文献   

11.
12.
Hausmann S  Schwer B  Shuman S 《Biochemistry》2004,43(22):7111-7120
Fcp1 is an essential protein serine phosphatase that dephosphorylates Ser2 or Ser5 of the RNA polymerase II carboxyl-terminal domain (CTD) heptad repeat Y(1)S(2)P(3)T(4)S(5)P(6)S(7). The CTD of the microsporidian parasite Encephalitozoon cuniculi consists of 15 heptad repeats, which approximates the minimal CTD length requirement for cell viability in yeast. Here we show that E. cuniculi encodes a minimized 411-aa Fcp1-like protein (EcFcp1), which consists of a DxDx(T/V) phosphatase domain and a BRCA1 carboxyl terminus (BRCT) domain but lacks the large N- and C-terminal domains found in fungal and metazoan Fcp1 enzymes. Nonetheless, EcFcp1 can function in lieu of Saccharomyces cerevisiae Fcp1 to sustain yeast cell growth. Recombinant EcFcp1 is a monomeric enzyme with intrinsic phosphatase activity against nonspecific (p-nitrophenyl phosphate) and specific (CTD-PO(4)) substrates. EcFcp1 dephosphorylates CTD positions Ser2 and Ser5 with similar efficacy in vitro. We exploit synthetic CTD Ser2-PO(4) and Ser5-PO(4) peptides to define minimized substrates for EcFcp1 and to illuminate the importance of CTD primary structure in Ser2 and Ser5 phosphatase activity.  相似文献   

13.
14.
15.
16.
17.
The cellulosome-integrating protein CipA, which serves as a scaffolding protein for the cellulolytic complex produced by Clostridium thermocellum, comprises a COOH-terminal duplicated segment termed the dockerin domain. This paper reports the cloning and sequencing of a gene, termed sdbA (for scaffoldin dockerin binding), encoding a protein which specifically binds the dockerin domain of CipA. The sequenced fragment comprises an open reading frame of 1,893 nucleotides encoding a 631-amino-acid polypeptide, termed SdbA, with a calculated molecular mass of 68,577 kDa. SAA comprises an NH2-terminal leader peptide followed by three distinct regions. The NH2-terminal region is similar to the NH2-terminal repeats of C. thermocellum OlpB and ORF2p. The central region is rich in lysine and harbors a motif present in Streptococcus M proteins. The COOH-terminal region consists of a triplicated sequence present in several bacterial cell surface proteins. The NH2-terminal region of SdbA and a fusion protein carrying the first NH2-terminal repeat of OlpB were shown to bind the dockerin domain of CipA. Thus, a new type of cohesin domain, which is present in one, two, and four copies in SdbA, ORF2p, and OlpB, respectively, can be defined. Since OlpB and most likely SdbA and ORF2p are located in the cell envelope, the three proteins probably participate in anchoring CipA (and the cellulosome) to the cell surface.  相似文献   

18.
Kops O  Zhou XZ  Lu KP 《FEBS letters》2002,513(2-3):305-311
The reversible phosphorylation of serine and threonine residues N-terminal to proline (pSer/Thr-Pro) is an important signaling mechanism in the cell. The pSer/Thr-Pro moiety exists in the two distinct cis and trans conformations, whose conversion is catalyzed by the peptidyl-prolyl isomerase (PPIase) Pin1. Among others, Pin1 binds to the phosphorylated C-terminal domain (CTD) of the largest subunit of the RNA polymerase II, but the biochemical and functional relevance of this interaction is unknown. Here we confirm that the CTD phosphatase Fcp1 can suppress a Pin1 mutation in yeast. Furthermore, this genetic interaction requires the phosphatase domain as well as the BRCT domain of Fcp1, suggesting a critical role of the Fcp1 localization. Based on these observations, we developed a new in vitro assay to analyze the CTD dephosphorylation by Fcp1 that uses only recombinant proteins and mimics the in vivo situation. This assay allows us to present strong evidence that Pin1 is able to stimulate CTD dephosphorylation by Fcp1 in vitro, and that this stimulation depends on Pin1's PPIase activity. Finally, Pin1 significantly increased the dephosphorylation of the CTD on the Ser(5)-Pro motif, but not on Ser(2)-Pro in yeast, which can be explained with Pin1's substrate specificity. Together, our results indicate a new role for Pin1 in the regulation of CTD phosphorylation and present a further example for prolyl isomerization-dependent protein dephosphorylation.  相似文献   

19.
The carboxyl-terminal domain (CTD) of the p90 ribosomal S6 kinases (RSKs) is an important regulatory domain in RSK and a model for kinase regulation of FXXFXF(Y) motifs in AGC kinases. Its properties had not been studied. We reconstituted activation of the CTD in Escherichia coli by co-expression with active ERK2 mitogen-activated protein kinase (MAPK). GST-RSK2-(aa373-740) was phosphorylated in the P-loop (Thr(577)) by MAPK, accompanied by increased phosphorylation on the hydrophobic motif site, Ser(386). Activated GST-RSK2-(aa373-740) phosphorylates synthetic peptides based on Ser(386). The peptide RRQLFRGFSFVAK, which was termed CTDtide, was phosphorylated with K(m) and V(max) values of approximately 140 microm and approximately 1 micromol/min/mg, respectively. Residues Leu at p -5 and Arg at p -3 are important for substrate recognition, but a hydrophobic residue at p +4 is not. RSK2 CTD is a much more selective peptide kinase than MAPK-activated protein kinase 2. CTDtide was used to probe regulation of hemagglutinin-tagged RSK proteins immunopurified from epidermal growth factor-stimulated BHK-21 cells. K100A but not K451A RSK2 phosphorylates CTDtide, indicating a requirement for the CTD. RSK2-(aa1-389) phosphorylates the S6 peptide, and this activity is inactivated by S386A mutation, but RSK2-(aa1-389) does not phosphorylate CTDtide. In contrast, RSK2-(aa373-740) containing only the CTD phosphorylates CTDtide robustly. Thus, CTDtide is phosphorylated by the CTD but not the NH(2)-terminal domain (NTD). Epidermal growth factor activates the CTD and NTD in parallel. Activity of the CTD for peptide phosphorylation correlates with Thr(577) phosphorylation. CTDtide activity is constrained in full-length RSK2. Interestingly, mutation of the conserved lysine in the ATP-binding site of the NTD completely eliminates S6 kinase activity, but a similar mutation of the CTD does not completely ablate kinase activity for intramolecular phosphorylation of Ser(386), even though it greatly reduces CTDtide activity. The standard lysine mutation used routinely to study kinase functions in vivo may be unsatisfactory when the substrate is intramolecular or in a tight complex.  相似文献   

20.
The C-terminal domain of the UvrC protein (UvrC CTD) is essential for 5' incision in the prokaryotic nucleotide excision repair process. We have determined the three-dimensional structure of the UvrC CTD using heteronuclear NMR techniques. The structure shows two helix-hairpin-helix (HhH) motifs connected by a small connector helix. The UvrC CTD is shown to mediate structure-specific DNA binding. The domain binds to a single-stranded-double-stranded junction DNA, with a strong specificity towards looped duplex DNA that contains at least six unpaired bases per loop ("bubble DNA"). Using chemical shift perturbation experiments, the DNA-binding surface is mapped to the first hairpin region encompassing the conserved glycine-valine-glycine residues followed by lysine-arginine-arginine, a positively charged surface patch and the second hairpin region consisting of glycine-isoleucine-serine. A model for the protein-DNA complex is proposed that accounts for this specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号