首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In present work, we investigated the peculiarities of the effect of a low-dose rate high-LET radiation that simulates the spectral and component composition of the radiation field formed in the atmosphere at a height of 10 km on mice in vivo. The dose dependence and adaptive response were examined. Irradiation of mice was performed for 24 h a day in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons for the time (15-31 days) necessary to accumulate the required doses. The experiments demonstrated that irradiation of mice in vivo in the dose range of 11.5-31.5 cGy leads to an increase in cytogenetic damage to bone marrow cells and induces no adaptive response in bone marrow cells.  相似文献   

2.
Carbon monoxide uptake (Vco) and ventilation rate (VR) of C3H mice were determined at 14 weeks following either X irradiation of lungs only or total-body irradiation with 60Co at different dose rates. Following localized X irradiation of lung at 97 cGy/min there was a reduction in Vco, which was inversely related to radiation dose, with a small reduction below control levels being detected at 7 Gy, the lowest dose tested. An increase in VR could be detected only at doses of 11 Gy, or more. Another group of animals received 11.5 Gy total-body irradiation at either 26.2 or 4.85 cGy/min followed by transplantation with syngeneic bone marrow. Following total-body irradiation, Vco was significantly reduced by about 37% at the higher dose rate and 23% at the lower dose rate. In contrast, a trend toward elevated VR was detected only at the higher dose rate. The results indicate that Vco is a sensitive indicator of radiation-induced lung injury and that under the experimental conditions used Vco is a more sensitive indicator of radiation-induced lung injury in C3H mice than VR.  相似文献   

3.
The dependence between the adaptive response and adaptive dose was studied on the basis of cytogenetic damage in polychromatic erythrocytes of bone marrow cells in mice after a low dose gamma-irradiation in vivo. The adaptive response to doses of 0.1 and 0.2 Gy was found to be retained for at least two months after irradiation. However, the adaptive dose of 0.4 Gy did not induce prolonged adaptive response.  相似文献   

4.
The micronucleus frequency in bone marrow erythrocytes from the F1 progeny of male mice exposed to chronic low-dose -irradiation was determined. Male BALB/c mice were irradiated with 10, 25 and 50 cGy at dose rates of 1, 5, and 15 cGy/day and mated with unirradiated females on day 15 after irradiation. The obtained offspring had an elevated micronucleus frequency in bone marrow erythrocytes at the age of 2 months. This suggests the transmission of genome instability from damaged germ-line cells of irradiated male parents to somatic cells of the progeny.  相似文献   

5.
The purpose of this work was to study the chronic influence of the high-energy radiation field formed in the atmosphere at an altitude of 10 to 30 km on the level of DNA damage in leukocytes of peripheral blood in mice. The external radiation field (behind the concrete shield) of the U-70 accelerator (Serpukhov, Russia) was used for these studies. This radiation field simulates the components and spectral composition of the high-energy radiation field formed in the atmosphere at an altitude of 10 to 30 km. Two groups of SHK line mice were chronically irradiated with a total dose equivalent to 21.5 and 31.5 cGy. The state of the genome of nucleated blood cells was assessed by the Comet assay (alkaline version) 72 h after completion of chronic irradiation. The level of genome damage in individual peripheral blood leukocytes of irradiated animals was compared with the basal level of DNA lesions in peripheral blood leukocytes of unirradiated control mice. The damage was expressed in %TDNA (the amount of DNA found in the "comet tail" in percent of total DNA in the "comet"). It was found that in mice exposed to the radiation field of the accelerator, the mean value of DNA damage was: %TDNA = 3.88 +/- 0.35% for a dose of 21.5 cGy and % TDNA = 6.00 +/- 0.82% for a dose of 31.5 cGy. In mice irradiated at an X-ray therapeutic device with a dose of 150 cGy 24 h before the examination, %TDNA was 2.27 +/- 0.34% and this did not differ from %TDNA in unirradiated mice, 2.68 +/- 0.56%. We suggest that the increased level of DNA damage observed in mice irradiated with 31.5 cGy from the mixed radiation field at the Serpukhov accelerator points to the development of genetic instability in their leukocytes as a result of chronic exposure of animals to this particular radiation field.  相似文献   

6.
Melanin’s influence on the chromosome aberration frequency induced by radiation in human lymphocytes and mouse bone marrow cells has been studied. We revealed earlier that melanin significantly decreases the frequencies of different radiation-induced mutations in animal germ cells. Melanin protection in somatic cells has been found to be less effective. The melanin effect in somatic cells depends on radiation dose: the lower the damage level, the better the melanin protection. In order to determine the influence of melanin at low radiation doses, the adaptive response was investigated in mouse bone marrow cells in vivo. The level of chromosome aberrations in these cells after fractionated irradiation of 0.2 Gy+1.5 Gy with a 4-h interval was about half that after a single dose of 1.7 Gy. If melanin was injected prior to irradiation, the aberration level decreased by a factor of about two in both cases. This observed result may be due to the potential radioprotective effect of melanin and to the absence of any adaptive response, whereas in the case of melanin application between the priming and challenge doses, the combined effect of the adaptive response as well as melanin protection resulted in a 4-fold decrease of chromosome aberrations. These results allow us to draw the following conclusions: adaptive response can be prevented by a radioprotector such as melanin, and melanin is capable of completely removing low-dose radiation effects. Received: 2 December 1998 / Accepted in revised form: 15 September 1999  相似文献   

7.
Chromosome damage and the spectrum of aberrations induced by low doses of γ-irradiation, X-rays and accelerated carbon ions (195 MeV/u, LET 16.6 keV/μm) in peripheral blood lymphocytes of four donors were studied. G0-lymphocytes were exposed to 1–100 cGy, stimulated by PHA, and analyzed for chromosome aberrations at 48 h post-irradiation by the metaphase method. A complex nonlinear dose–effect dependence was observed over the range of 1 to 50 cGy. At 1–7 cGy, the cells showed the highest radiosensitivity per unit dose (hypersensitivity, HRS), which was mainly due to chromatid-type aberration. According to the classical theory of aberration formation, chromatid-type aberrations should not be induced by irradiation of unstimulated lymphocytes. With increasing dose, the frequency of aberrations decreased significantly, and in some cases it even reached the control level. At above 50 cGy the dose–effect curves became linear. In this dose range, the frequency of chromatid aberrations remained at a low constant level, while the chromosome-type aberrations increased linearly with dose. The high yield of chromatid-type aberrations observed in our experiments at low doses confirms the idea that the molecular mechanisms which underlie the HRS phenotype may differ from the classical mechanisms of radiation-induced aberration formation. The data presented, as well as recent literature data on bystander effects and genetic instability expressed as chromatid-type aberrations on a chromosomal level, are discussed with respect to possible common mechanisms underlying all low-dose phenomena.  相似文献   

8.
After NO adding to mice blood and isolated erythrocytes ESR signal of nitrozyl complex HbNO (g = 2.07, g = 1.98) and NO-induced MetNg (g = 6.0) were registered. It was shown that the intensity of ESR spectra of these complexes increased after radiation of mice with a dose of 0.06, 0.6 and 5.4 cGy. Low-dose irradiation (0.6 and 0.06 cGy) caused the change in the form of ESR spectra of HbNO (g = 2.07), which is indicative of the shift from T-structure to R-structure and of the preferred formation of R-conformations of oxyhemoglobin in blood. It was found that dependence of NO-induced MetHb signal on irradiation dose is bimodal that may be connected with nonlinear response of the cells to irradiation and retarded adaptive response after radiation with low doses.  相似文献   

9.
10.

Purpose

Ablative bone marrow irradiation is an integral part of hematopoietic stem cell transplantation. These treatment regimens are based on classically held models of radiation dose and the bone marrow response. Flt-3 ligand (FL) has been suggested as a marker of hematopoiesis and bone marrow status but the kinetics of its response to bone marrow irradiation has yet to be fully characterized. In the current study, we examine plasma FL response to total body and partial body irradiation in mice and its relationship with irradiation dose, time of collection and pattern of bone marrow exposure.

Materials/Methods

C57BL6 mice received a single whole body or partial body irradiation dose of 1–8 Gy. Plasma was collected by mandibular or cardiac puncture at 24, 48 and 72 hr post-irradiation as well as 1–3 weeks post-irradiation. FL levels were determined via ELISA assay and used to generate two models: a linear regression model and a gated values model correlating plasma FL levels with radiation dose.

Results

At all doses between 1–8 Gy, plasma FL levels were greater than control and the level of FL increased proportionally to the total body irradiation dose. Differences in FL levels were statistically significant at each dose and at all time points. Partial body irradiation of the trunk areas, encompassing the bulk of the hematopoietically active bone marrow, resulted in significantly increased FL levels over control but irradiation of only the head or extremities did not. FL levels were used to generate a dose prediction model for total body irradiation. In a blinded study, the model differentiated mice into dose received cohorts of 1, 4 or 8 Gy based on plasma FL levels at 24 or 72 hrs post-irradiation.

Conclusion

Our findings indicate that plasma FL levels might be used as a marker of hematopoietically active bone marrow and radiation exposure in mice.  相似文献   

11.

Transgenerational genomic instability in the first generation offspring of mice exposed to lowintensity infrared laser (632.8 nm) and light-emitting-diode infrared irradiation (850 nm) was investigated in vivo. It was found that the level of spontaneous damage in bone marrow according to the micronucleus test, the level of reactive oxygen species in whole blood, and the mass index of lymphoid organs in all of the descendants of irradiated mice did not increase. After additional X-ray exposure of the progeny at a dose rate of 1.5 Gy, a decrease in the level of damage and the absence of an adaptive response were revealed upon testing according to “radiosensitivity” and the radiation-induced adaptive-response scheme (0.1 + 1.5 Gy), respectively, compared to the descendants of nonirradiated mice. The rate of tumor growth in the offspring of irradiated mice did not differ from that in the descendants of nonirradiated mice, although inhibition of the tumor growth rate was observed in their irradiated parents. The survival rate after irradiation at a dose rate of 6.5 Gy did not differ from both the parents and the control.

  相似文献   

12.
With the use of the micronuclear test method it has been shown that mice preirradiated with gamma rays at a low dose rate exhibit a decreased frequency of chromosome aberrations induced in bone marrow cells by subsequent acute exposure to gamma radiation as compared to mice not subjected to preliminary irradiation. Such animals have a higher radioresistance with respect to the survival rate. The results obtained suggest the possibility of induction by ionizing radiation, at a low dose rate, of adaptive repair response at the organism level.  相似文献   

13.
The genetic resistance to a parental bone marrow transplant as demonstrated, when transplantation was performed early after irradiation, failed to occur if the interval between irradiation and transplantation was increased to 4 days. A similar radiation induced weakening of genetic resistance to a parental bone marrow graft in spleen and bone marrow could be demonstrated in mice, which had been irradiated with a sublethal dose at 7 days prior to the lethal irradiation and transplantation. The pre-irradiation of the recipient with a sublethal dose induced an enhancement of the growth in spleen and bone marrow of isogeneic transplanted CFU. The pre-irradiation of a single tibia also resulted in a significant weakening of the resistance in the spleen. The experiments with partial body pre-irradiation suggested a local effect of the pre-irradiation, but it could be shown that the enhanced CFU growth is not caused by an enhanced seeding of CFU in pre-irradiated bone marrow. The role of microenvironment in the phenomenon of genetic resistance is discussed.  相似文献   

14.
Total body Irradiation (TBI) is often used for conditioning, prior to bone marrow transplantation. Doses of 8–14 Gy in 1–8 fractions over 1–4 days are administered using low dose rate external beam radiotherapy (EBRT). When necessary, consolidation EBRT using conventional doses, fractionation and dose rate is given. The irradiated volume usually contains critical organs such as spinal cord. The purpose of this study was to assess the biologic effect of TBI on the spinal cord in terms of EQD2 (equivalent dose given in fractions of 2 Gy). EQD2 values were calculated using the linear-quadratic generalized incomplete repair (IR) model that incorporates IR between fractions and low dose rate irradiation corrections and accounts for mono and bi-exponential repair. Three fractionation schemes were studied as function of dose rate: 8 Gy in 1 and 2 fractions and 12 Gy in 8 fractions. For the 12 Gy in 8 fractions scheme, the influence of dose rate on EQD2 was limited because the effect of IR between fractions dominates. For the 8 Gy in 1 fraction scheme, significant sparing of the spinal cord may be achieved for low dose rate (5–20 cGy/min). The extent of effects depends on the parameters used. The IR model provides a useful mathematical framework for examination of the effects of fractionated treatments of varying dose rate. Reliable experimental data are needed for accurate assessment of radiation damage to the spinal cord following fractionated low dose rate TBI.  相似文献   

15.
The genetic resistance to a parental bone marrow transplant as demonstrated, when transplantation was performed early after irradiation, failed to occur if the interval between irradiation and transplantation was increased to 4 days. A similar radiation induced weakening of genetic resistance to a parental bone marrow graft in spleen and bone marrow could be demonstrated in mice, which had been irradiated with a sublethal dose at 7 days prior to the lethal irradiation and transplantation. The pre-irradiation of the recipient with a sublethal dose induced an enhancement of the growth in spleen and bone marrow of isogeneic transplanted CFU. The pre-irradiation of a single tibia also resulted in a significant weakening of the resistance in the spleen. The experiments with partial body pre-irradiation suggested a local effect of the pre-irradiation, but it could be shown that the enhanced CFU growth is not caused by an enhanced seeding of CFU in pre-irradiated bone marrow. The role of microenvironment in the phenomenon of genetic resistance is discussed.  相似文献   

16.
《Mutation Research Letters》1994,323(1-2):53-61
Tritriated water (HTO) is a major toxic effluent from the nuclear power industry, that is released into the environment in large quantities. The low dose radiation effect and dose rate effect of HTO on human lymphocytes and bone marrow cells have not been well studied. The present study was therefore undertaken to investigate the HTO dose-response relationship for chromosomal aberrations in human lymphocytes and bone marrow cells at low in vitro radiation doses ranging from 0.1 to 1 Gy. Lymphocytes (G0 stage) and bone marrow cells were incubated for 10–150 min with HTO at a dose rate of 2cGy/min (555 MBq/ml). The relative biological effectiveness (RBE) of HTO was calculated with respect to 60Co γ-rays for the induction of dicentric and centric ring chromosomes at low radiation doses. The RBE value for HTO β-rays relative to 60Co γ-rays was 2.7 for lymphocytes and 3.1 for chromatid aberrations in bone marrow cells. Lymphocytes were also chronically exposed to HTO for 6.7–80 h at dose rates of 0.5 cGy/min (138.5 MBq/ml) and 0.02 cGy/min (5.6 MBq/ml). There was a 71.5% decrease in the yield of dicentrics and centric rings at the dose rate of 0.02 cGy/min, indicating a clear dose rate effect of HTO. The RBE value for HTO relative to 137Cs γ-rays was 2.0 at a dose rate of 0.02 cGy/min, suggesting that low HTO dose rates produce no increase of the RBE values and that the values may be constant between 2 and 3 within these dose rates. These results should prove useful in assessment of the health risk for humans exposed to low levels of HTO.  相似文献   

17.
Effect of low-dose radiation on repair of DNA and chromosome damage   总被引:1,自引:0,他引:1  
In this report results of studies on the effect of different doses of low LET (linear energy transfer) radiations on the unscheduled DNA synthesis (UDS) and DNA polymerase activity as well as the induction of adaptive response in bone marrow cells (BMC) by low dose radiation were presented. It was found that whole-body irradiation (WBI) with X-ray doses above 0.5 Gy caused a dose-dependent depression of both UD5 and DNA polymerase activity, while low dose radiation below 250 mGy could stimulate the DNA repair synthesis and the enzyme activity. WBI of mice with low doses of X-rays in the range of 2-100 mGy at a dose rate of 57.3 mGy per minute induced an adaptive response in the BMC expressed as a reduction of chromosome aberrations following a second exposure to a larger dose (0.65 mGy). It was demonstrated that the magnitude of the adaptive response seemed to be inversely related to the induction dose. The possibility of induction of adaptive response in GO phase of the cell cycle and the possibility of a second induction of the adaptive response were discussed.  相似文献   

18.
目的:观察减毒沙门氏菌携带的血小板第四因子活性片段PF417 70 的放射保护作用。方法:通过口服途经喂饲小鼠携带PF4活性片段的减毒沙门氏菌,在第 2次喂饲后小鼠接受 70 0cGy全身照射,然后观察PIRES2 EGFP PF417 70 在小鼠体内的表达,并观察小鼠的造血恢复情况。结果:在小鼠的肝脏、脾脏、肾脏、小肠、外周血及骨髓均能检测到GFP的表达和转基因的整合。与对照组比较,实验组小鼠的生存期明显延长,照射后第 7d和 1 4d骨髓有核细胞数、骨髓培养的CFU GM和HPP CFC数量明显增加 (P <0 0 5 )。结论:首次应用减毒沙门氏菌SL32 61为载体来介导PF4活性片段的生物学作用,并证实通过口服途径可以保护小鼠免受放射损伤,并促进放射损伤后小鼠的造血恢复。  相似文献   

19.
低水平辐射诱导的细胞遗传学适应性反应   总被引:6,自引:0,他引:6  
蔡露  刘树铮 《遗传学报》1991,18(2):109-114
先用0.01GY x-射线(剂量率:0.01GY/分)体外照射人、兔外周血,经不同时间后再用1.5GY X-射线(0.44GY/分)照射,发现在G_0、G_1、S和G_2期受0.01GY X-射线照射后再给大剂量照射者,其染色体畸变率明显低于单纯受1.5GY X-射线照射组(P<0.01)。这一适应性反应能持续3个细胞周期,在接受小剂量照射后超过3个细胞周期再受大剂量照射者,染色体畸变率未见减少。若在第三细胞周期以后再次给予小剂量照射,可再次诱导适应性反应。用小鼠整体小剂量照射后骨髓细胞和生殖细胞亦出现这种适应性反应。另外也探讨了不同剂量和不同剂量率的预先照射对适应性反应的影响。  相似文献   

20.
The non-targeted effects of human exposure to ionising radiation, including transgenerational instability manifesting in the children of irradiated parents, remains poorly understood. Employing a mouse model, we have analysed whether low-dose acute or low-dose-rate chronic paternal γ-irradiation can destabilise the genomes of their first-generation offspring. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in DNA samples extracted from sperm of directly exposed BALB/c male mice, as well as from sperm and the brain of their first-generation offspring. For acute γ-irradiation from 10-100 cGy a linear dose-response for ESTR mutation induction was found in the germ line of directly exposed mice, with a doubling dose of 57 cGy. The mutagenicity of acute exposure to 100 cGy was more pronounced than that for chronic low-dose-rate irradiation. The analysis of transgenerational effects of paternal irradiation revealed that ESTR mutation frequencies were equally elevated in the germ line (sperm) and brain of the offspring of fathers exposed to 50 and 100 cGy of acute γ-rays. In contrast, neither paternal acute irradiation at lower doses (10-25 cGy), nor low-dose-rate exposure to 100 cGy affected stability of their offspring. Our data imply that the manifestation of transgenerational instability is triggered by a threshold dose of acute paternal irradiation. The results of our study also suggest that most doses of human exposure to ionising radiation, including radiotherapy regimens, may be unlikely to result in transgenerational instability in the offspring children of irradiated fathers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号