首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The respective roles of H2O2 and .OH radicals was assessed from the protective effects of catalase and the iron chelator o-phenanthroline on 1) the inhibition of protein synthesis, and 2) DNA damage and the related events (activation of the DNA repairing enzyme poly(ADP)ribose polymerase with the associated depletion of NAD and ATP stores) in cultured endothelial cells exposed to the enzyme reaction hypoxanthine-xanthine oxidase (HX-XO) or pure H2O2. Catalase added in the extracellular phase completely prevented all of these oxidant-induced changes. O-phenanthroline afforded a complete protective effect against DNA strand breakage and the associated activation of the enzyme poly(ADP)ribose polymerase. By contrast, iron chelation was only partially effective in maintaining the cellular NAD and ATP contents, as well as the protein synthetic activity. In addition, the ATP depletion following oxidant injury was much more profound than NAD depletion. These results indicate that: 1) .OH radical was most likely the ultimate O2 species responsible for DNA damage and activation of poly(ADP)ribose polymerase; 2) both H2O2 and .OH radicals were involved in the other cytotoxic effects (inhibition of protein synthesis and reduction of NAD and ATP stores); and 3) NAD and ATP depletion did not result solely from activation of poly(ADP)ribose polymerase, but other mechanisms are likely to be involved. These observations are also compatible with the existence of a compartmentalized intracellular iron pool.  相似文献   

2.
These experiments are a continuation of work investigating the mechanism of oxidant-induced damage to cultured bovine pulmonary artery endothelial cells (BPEC). Earlier experiments implicated DNA strand breakage and activation of poly(ADP-ribose)polymerase as critical steps in cell injury. In the current report, a better defined model of oxidant stress was used to investigate DNA damage, lipid peroxidation and protein thiol oxidation in BPEC following oxidant stress. The dose and time response of LDH release following exposure to H2O2 were established. H2O2 was metabolized rapidly by BPEC (t1/2 = 20 min). Hydrogen peroxide-induced increases in thiobarbituric acid (TBA) reactive material were prevented by pretreatment with the lipophilic antioxidant diphenylphenylinediamine (DPPD). However, DPPD did not decrease LDH release. Conversely, pretreatment with 5 mM 3-aminobenzamide (3AB), a competitive inhibitor of poly(ADP-ribose)polymerase, prevented LDH release from BPEC following H2O2 treatment. Dithiothreitol (DTT), a sulfhydryl reducing agent, also prevented LDH release. The effects of 3AB and DTT on H2O2-induced changes in DNA strand breaks and NAD+ and ATP levels were investigated as well as the effect of H2O2 on soluble and protein-bound thiols. As DPPD inhibited peroxidation without preventing LDH release, lipid peroxidation does not appear to play a role in the loss of BPEC viability in response to oxidant stress. As protein thiol oxidation was not caused by H2O2, it does not appear to play a causative role in cytotoxicity, although DTT may protect via maintenance of soluble thiols. H2O2 induces DNA strand breaks, which activate poly(ADP-ribose)polymerase, leading to depletion of cellular NAD+ and ATP and loss in cell viability. This supports earlier studies implicating the activation of poly(ADP-ribose)polymerase in oxidant injury to cultured endothelial cells.  相似文献   

3.
Poly(ADP ribosyl)ation, a post-translational modification of nuclear proteins catalyzed by poly (ADP ribose) polymerase, is an immediate response of most eukaryotic cells to DNA strand breaks and has been implicated in DNA repair and other cellular phenomena associated with DNA strand breakage. Poly(ADP ribose) polymerase activity levels have been frequently assayed by incubating permeabilized cells with radioactively labeled NAD+ as substrate. In such assays enzyme activation has routinely been achieved indirectly by prior exposure of living cells to carcinogens or by adding DNase I to permeabilized cells, thereby introducing strand breaks in chromosomal DNA. Here we show that, as an alternative method, the direct activation of purified poly(ADP ribose) polymerase by double-stranded oligonucleotides (N. A. Berger and S. I. Petzold, 1985, Biochemistry 24, 4352-4355) can be adopted for permeabilized cell systems. The inclusion of a palindromic decameric deoxynucleotide in the reaction buffer stimulated the enzyme activity in permeabilized Molt-3 human lymphoma cells up to 30-fold (at 50 micrograms/ml [corrected] oligonucleotide concentration) in a concentration-dependent manner. The activating effect of oligonucleotides was also evident when ethanol-fixed HeLa cells were postincubated with NAD+ to allow poly(ADP ribose) synthesis to occur in situ, which was detected as specific anti-poly (ADP ribose) immunofluorescence. We conclude that double-stranded oligonucleotides can be conveniently used as chemically and stoichiometrically well-defined poly (ADP ribose) polymerase activators in permeabilized or ethanol-fixed mammalian cells.  相似文献   

4.
The effects of oxidative stress on DNA damage and associated reactions, increased polyadenosine diphosphate-ribose polymerase (PARP) activity and decreased nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP) contents, have been tested in primary cultures of porcine aortic endothelial cells. The cells were treated with 50-500 microM H2O2 for 20 min or 100 microM paraquat for 3 days or were exposed to 95% O2 for 2 and 5 days. The administration of 250-500 microM H2O2 resulted in a marked increase in PARP activity and a profound depletion of ATP and NAD. Although hyperoxia had no effect on PARP activity and reduced only slightly the ATP and NAD stores, it markedly reduced the ability of endothelial cells to increase PARP activity upon exposure to DNase. Paraquat had a similar effect. Human dermal fibroblasts were also exposed to 50-500 microM H2O2 for 20 min or 95% O2 for 5 days. Their response to H2O2 differed from that of endothelial cells by their ability to maintain the ATP content at a normal level. Fibroblasts were also insensitive to the effect of hyperoxia. These results suggest that the oxidant-related DNA damage is a function of the type of oxidative stress used and may be cell-specific.  相似文献   

5.
Rat testis H1 proteins were poly(ADP‐ribosyl)ated in vitro. The modifying product, poly(ADP‐ribose), was found covalently bound to each histone variant at various extents and exhibited distinct structural features (linear and short, rather than branched and long chains). Interest was focused on the somatic H1a, particularly abundant in the testis, as compared with other tissues, and the testis‐specific H1t, which appears only at the pachytene spermatocyte stage of germ cell development. These H1s were modified with poly(ADP‐ribose) by means of two in vitro experimental approaches. In the first system, each variant was incubated with purified rat testis poly(ADP‐ribose)polymerase in the presence of [32P] NAD. In parallel, poly(ADP‐ribosyl)ated H1s were also prepared following incubation of intact rat testis nuclei with [32P] NAD. In both experiments, the poly(ADP‐ribosyl)ated proteins were purified from the native forms by means of phenyl boronic agarose chromatography. The results from both analyses were in agreement and showed qualitative differences with regard to the poly(ADP‐ribose) covalently associated with H1a and H1t. Comparison of the bound polymers clearly indicated that the oligomers associated with H1a were within 10–12 units long, whereas longer chains (≤20 ADP‐R units) were linked to H1t. Individual poly(ADP‐ribosyl)ated H1s were complexed with homologous H1‐depleted oligonucleosomes (0.5–2.5 kbp) in order to measure their ability to condensate chromatin, in comparison with the native ones. Circular dichroism showed that the negative charges of the oligomeric polyanion, although present in limited numbers, highly influenced the DNA‐binding properties of the analyzed H1s. In particular, the poly(ADP‐ribosyl)ated H1a and H1t had opposite effects on the condensation of H1‐depleted oligonucleosomes. J. Cell. Biochem. 76:20–29, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Continuous exposure of Chinese hamster ovary (CHO) cells to an atmosphere of 98% O2, 2% CO2 (normobaric hyperoxia) leads within a period of several days to cytostasis and clonogenic cell death. Here we report respiratory failure as an important early symptom of oxygen intoxication in CHO cells, resulting in a more than 80% inhibition of oxygen consumption within 3 days of hyperoxic exposure. This inhibition appeared to be correlated with selective inactivation of three mitochondrial key enzymes, NADH dehydrogenase, succinate dehydrogenase, and alpha-ketoglutarate dehydrogenase. The latter enzyme controls the influx of glutamate into the Krebs cycle and is particularly critical for oxidative ATP generation in most cultured cells, which depends on exogenous glutamine rather than glucose as a carbon source. As expected, the inactivation of alpha-ketoglutarate dehydrogenase was correlated with a fall in cellular glutamine utilization, which became apparent from the first day of hyperoxic exposure. Thereafter, glucose utilization and lactate excretion started to increase, up to 3-fold, indicating a cellular response to respiratory failure aimed at increased ATP generation from glycolysis. However, in spite of this response, the cellular ATP level progressively decreased, up to 2.5-fold. Thus, killing of CHO cells by normobaric hyperoxia seems to be due to a severe disturbance of mitochondrial metabolism eventually leading to a depletion of cellular ATP pools.  相似文献   

7.
The effect of DNA damage caused by N-methyl-N'-nitro-nitrosoguanidine (MNNG) on poly(ADP-ribose) synthesis, NAD levels, and purine nucleotide metabolism was studied in human T-lymphoblasts. Excessive DNA breaks caused by MNNG activated poly(ADP-ribose) polymerase and rapidly consumed intracellular NAD. NAD depletion was followed by rapid catabolism of ATP as well as induction of total purine nucleotide catabolism leading to excretion of purine catabolic products. MNNG-treated cells were not able to replenish the intracellular nucleotide pools due to the depletion of intracellular ATP and phosphoribosylpyrophosphate pools which are required for de novo purine biosynthesis. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide prevented both the depletion of NAD pools and the associated changes in purine nucleotide metabolism.  相似文献   

8.
The highly systematic responses of cellular cofactors to controlled substrate limitations of electron donor, electron acceptor, and both (dual limitation) were quantified using continuous-flow cultures of Pseudomonas putida. The results showed that the NADH concentration in the cells decreased gradually as the specific rate of electron-donor utilization (-q(d)) fell or increased systematically as oxygen limitation became more severe for fixed -q(d), while the NAD concentration was invariant. The NAD(H) responses demonstrated a common strategy; compensation for a low concentration of an externally supplied substrate by increasing (or decreasing) the concentration of its internal cosubstrate (or coproduct). The compensation was dramatic, as the NAD/NADH ratio showed a 24-fold modulation in response to depletion of dissolved oxygen (DO) or acetate. In the dual-limitation region, the compensating effects toward depletion of one substrate were damped, because the other substrate was simultaneously at low concentration. However, the NAD(H) responses minimized the adverse impact from substrate depletion on overall cell metabolism. Cellular contents of ATP, ADP, and P(i) were mostly affected by -q(d), such that the phosphorylation potential, ATP/ADP . P(i), increased as -q(d) fell due to depletion of acetate, DO, or both. Since the respiration rate should be slowed by high ATP/ADP . P(i), the cellular response seems to amplify an unfavorable environmental condition when oxygen is depleted. The likely reason for this apparent disadvantageous response is that the response of phosphorylation potential is more keenly associated with other aspects of metabolic control, such as for synthesis, which requires P(i) for production of phospholipids and nucleotides. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
After genotoxic stress poly(ADP-ribose) polymerase-1 (PARP-1) can be hyperactivated, causing (ADP-ribosyl)ation of nuclear proteins (including itself), resulting in NAD(+) and ATP depletion and cell death. Mechanisms of PARP-1-mediated cell death and downstream proteolysis remain enigmatic. beta-lapachone (beta-lap) is the first chemotherapeutic agent to elicit a Ca(2+)-mediated cell death by PARP-1 hyperactivation at clinically relevant doses in cancer cells expressing elevated NAD(P)H:quinone oxidoreductase 1 (NQO1) levels. Beta-lap induces the generation of NQO1-dependent reactive oxygen species (ROS), DNA breaks, and triggers Ca(2+)-dependent gamma-H2AX formation and PARP-1 hyperactivation. Subsequent NAD(+) and ATP losses suppress DNA repair and cause cell death. Reduction of PARP-1 activity or Ca(2+) chelation protects cells. Interestingly, Ca(2+) chelation abrogates hydrogen peroxide (H(2)O(2)), but not N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PARP-1 hyperactivation and cell death. Thus, Ca(2+) appears to be an important co-factor in PARP-1 hyperactivation after ROS-induced DNA damage, which alters cellular metabolism and DNA repair.  相似文献   

10.
Overproduction of reactive oxygen species is one of the major causes of cell death in ischemic-reperfusion (I/R) injury. In I/R animal models, electron microscopy (EM) has shown mixed apoptotic and necrotic characteristics in the same cardiomyocyte. The present study shows that H(2)O(2) activates both apoptotic and necrotic machineries in the same myocyte and that the ultrastructure seen using EM is very similar to that in I/R animal studies. The apoptotic component is caused by the activation of clotrimazole-sensitive, NAD(+)/ADP ribose/poly(ADP-ribose) polymerase (PARP)-dependent transient receptor potential M2 (TRPM2) channels, which induces mitochondrial [Na(+)](m) (and [Ca(2+)](m)) overload, resulting in mitochondrial membrane disruption, cytochrome c release, and caspase 3-dependent chromatin condensation/fragmentation. The necrotic component is caspase 3-independent and is caused by PARP-induced [ATP](i)/NAD(+) depletion, resulting in membrane permeabilization. Inhibition of either TRPM2 or PARP activity only partially inhibits cell death, while inhibition of both completely prevents the ultrastructural changes and myocyte death.  相似文献   

11.
Lack of effect of 4-nitroquinoline 1-oxide on cellular NAD levels   总被引:2,自引:0,他引:2  
I G Walker 《Mutation research》1984,139(3):155-159
Human KB cells were treated with doses of 4-nitroquinoline 1-oxide (4NQO) or dimethyl sulfate (DMS) that produced equal numbers of DNA-strand breaks when measured by velocity sedimentation analysis in an alkaline sucrose gradient. The DMS treatment also caused a profound and sustained lowering of cellular NAD content. The 4NQO treatment had no effect on the cellular NAD content. This result with 4NQO was not expected because strand breaks in DNA activate poly(ADP-ribose)polymerase and in the ensuing reaction NAD is consumed. Since 4NQO adducts are removed by an excision-repair process it is postulated that the strand breaks formed during the repair process are not accessible to poly(ADP-ribose)polymerase.  相似文献   

12.
We have recently shown that exposure of Chinese hamster ovary (CHO) cells to a toxic dose of normobaric hyperoxia (98% O2 for 3 days) caused a disturbance of cellular energy metabolism, that is, respiratory failure followed by stimulation of glycolytic activity and a net depletion of ATP. Respiratory failure was correlated with a selective inactivation of three mitochondrial enzymes, that is, partial inactivation of NADH dehydrogenase and virtually complete inactivation of succinate and alpha-ketoglutarate dehydrogenase activities (Schoonen et al., 1990). To elucidate the biochemical basis of resistance to hyperoxia in a previously described oxygen-resistant substrain of Chinese hamster ovary (CHO) cells, we compared the resistant cells with wildtype CHO cells with respect to several key parameters of oxidative and glycolytic energy metabolism. The two cell types were critically different in that the succinate and alpha-ketoglutarate dehydrogenases of the oxygen-resistant cells were relatively resistant to inactivation by hyperoxia, which may at least partly explain their enhanced capacity to respire and survive under hyperoxic conditions. Although the biochemical basis for the observed enzyme resistance to hyperoxic inactivation remains to be elucidated, the present data underscore the importance of succinate and alpha-ketoglutarate dehydrogenases as critical targets in hyperoxic killing of wildtype CHO cells.  相似文献   

13.
The degree of complexing between DNA and chromosomal proteins and the ability of poly adenosine diphosphate ribosylation (ADP-ribosylation) of nuclear proteins to release this template restriction and expose DNA primer site changes during the HeLa cell cycle. Primer site exposure by NAD and poly ADP(ribose) polymerase was assessed with intact nuclei by single deoxynucleotide incorporation into DNA in the presence of saturating bacterial DNA polymerase. The most marked in vitro enhancement of primer site exposure by ADP-ribosylation occurred in early G1 phase, where cellular template restriction was the greatest. Cytoplasmic DNA polymerase also had high activity in early G1 phase of the cell cycle. Streptozotocin reduces NAD pools in HeLa cells; a concomitant stimulation of nuclear poly ADP(ribose) polymerase activity is noted.  相似文献   

14.
TAS-103, a new anticancer drug, induces DNA cleavage by inhibiting the activities of topoisomerases I and II. We investigated the mechanism of TAS-103-induced apoptosis in human cell lines. Pulsed field gel electrophoresis revealed that in the leukemia cell line HL-60 and the H(2)O(2)-resistant subclone, HP100, TAS-103 induced DNA cleavage to form 1-2-Mb fragments at 1 h to a similar extent, indicating that the DNA cleavage was induced independently of H(2)O(2). TAS-103-induced DNA ladder formation in HP100 cells was delayed compared with that seen at 4 h in HL-60 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded increases in mitochondrial membrane potential (DeltaPsim) and caspase-3 activation. Inhibitors of poly(ADP-ribose) polymerase (PARP) prevented both TAS-103-induced H(2)O(2) generation and DNA ladder formation. The levels of NAD(+), a PARP substrate, were significantly decreased in HL-60 cells after a 3-h incubation with TAS-103. The decreases in NAD(+) levels preceded both increases in DeltaPsim and DNA ladder formation. Inhibitors of NAD(P)H oxidase prevented TAS-103-induced apoptosis, suggesting that NAD(P)H oxidase is the primary enzyme mediating H(2)O(2) formation. Expression of the antiapoptotic protein, Bcl-2, in BJAB cells drastically inhibited TAS-103-induced apoptosis, confirming that H(2)O(2) generation occurs upstream of mitochondrial permeability transition. Therefore, these findings indicate that DNA cleavage by TAS-103 induces PARP hyperactivation and subsequent NAD(+) depletion, followed by the activation of NAD(P)H oxidase. This enzyme mediates O(2)(-)-derived H(2)O(2) generation, followed by the increase in DeltaPsim and subsequent caspase-3 activation, leading to apoptosis.  相似文献   

15.
J L Sims  S J Berger  N A Berger 《Biochemistry》1983,22(22):5188-5194
Inhibitors of poly(ADP-ribose) polymerase stimulated the level of DNA, RNA, and protein synthesis in DNA-damaged L1210 cells but had negligible effects in undamaged L1210 cells. The poly(ADP-ribose) polymerase inhibitors stimulated DNA repair synthesis after cells were exposed to high concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (68 and 136 microM) but not after exposure to low concentrations (13.6 and 34 microM). When the L1210 cells were exposed to 136 microM N-methyl-N'-nitro-N-nitrosoguanidine, the activation of poly(ADP-ribose) polymerase resulted in the rapid depletion of oxidized nicotinamide adenine dinucleotide (NAD+) levels and subsequent depletion of adenosine 5'-triphosphate (ATP) pools. After low doses of N-methyl-N'-nitro-N-nitrosoguanidine (13.6 microM), there were only small decreases in NAD+ and ATP. Poly(ADP-ribose) polymerase inhibitors prevented the rapid fall in NAD+ and ATP pools. This preservation of the ATP pool has a permissive effect on energy-dependent functions and accounts for the apparent stimulation of DNA, RNA, and protein synthesis. Thus, the mechanism by which poly(ADP-ribose) polymerase inhibitors stimulate DNA, RNA, and protein synthesis in DNA-damaged cells appears to be mediated by their ability to prevent the drastic depletion of NAD+ pools that occurs in heavily damaged cells, thereby preserving the cells' ability to generate ATP and maintain energy-dependent processes.  相似文献   

16.
Massive poly(ADP-ribose) formation by poly(ADP-ribose) polymerase-1 (PARP-1) triggers NAD depletion and cell death. These events have been invariantly related to cellular energy failure due to ATP shortage. The latter occurs because of both ATP consumption for NAD resynthesis and impairment of mitochondrial ATP formation caused by an increase of the AMP/ADP ratio. ATP depletion is therefore thought to be an inevitable consequence of NAD loss and a hallmark of PARP-1 activation. Here, we challenge this scenario by showing that PARP-1 hyperactivation in cells cultured in the absence of glucose (Glu cells) is followed by NAD depletion and an unexpected PARP-1 activity-dependent ATP increase. We found increased ADP content in resting Glu cells, a condition that counteracts the increase of the AMP/ADP ratio during hyperpoly(ADP-ribosyl)ation and preserves mitochondrial coupling. We also show that the increase of ATP in Glu cells is due to adenylate kinase activity, transforming AMP into ADP which, in turn, is converted into ATP by coupled mitochondria. Interestingly, PARP-1-dependent mitochondrial release of apoptosis-inducing factor (AIF) and cytochrome complex (Cyt c) is reduced in Glu cells, even though cell death eventually occurs. Overall, the present study identifies basal ADP content and adenylate kinase as key determinants of bioenergetics during PARP-1 hyperactivation and unequivocally demonstrates that ATP loss is not metabolically related to NAD depletion.  相似文献   

17.
Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.  相似文献   

18.
Adriamycin caused significant interphase death in HL-60 cells during six hours of incubation, which was abolished by the poly(ADP-ribose) polymerase inhibitors, 3-aminobenzamide or nicotinamide. Neither agent changed adriamycin uptake by HL-60 cells. Although 3-aminobenzamide did not alter the number of DNA strand breaks caused by adriamycin, it prevented adriamycin-induced depletion of intracellular NAD+ and ATP, and maintained energy charge. These findings suggest that the activation of poly(ADP-ribose) synthesis plays an important role in the adriamycin-induced interphase death of proliferating HL-60 cells.  相似文献   

19.
Poly(ADP)ribose polymerase (PARP) may participate in cell survival, apoptosis and development of DNA damage. We investigated the role of PARP in transformed human pleural mesothelial (MeT-5A) and alveolar epithelial (A549) cells exposed from 0.05 to 5mM hydrogen peroxide (H(2)O(2)) or crocidolite asbestos fibres (1-10 microg/cm(2)) in the presence and absence of 3-aminobenzamide (ABA), a PARP inhibitor. The cells were investigated for the development of cell injury, DNA single strand breaks and depletion of the cellular high-energy nucleotides. Compared to H(2)O(2), fibres caused a minor decrease in cell viability and effect on the cellular high-energy nucleotide depletion, and a marginal effect on the development of DNA strand breaks when assessed by the single cell gel electrophoresis (the Comet assay). Inhibition of PARP transiently protected the cells against acute H(2)O(2) related irreversible cell injury when assessed by microculture tetrazolium dye (XTT) assay and potentiated oxidant related DNA damage when assessed by the Comet assay. However, PARP inhibition had no significant effect on fibre-induced cell or DNA toxicity with the exception of one fibre concentration (2 microg/cm(2)) in MeT-5A cells. Apoptosis is often associated with PARP cleavage and caspase activation. Fibres did not cause PARP cleavage or activation of caspase 3 further confirming previous results about relatively low apoptotic potential of asbestos fibres. In conclusion, maintenance of cellular high-energy nucleotide pool and high viability of asbestos exposed cells may contribute to the survival and malignant conversion of lung cells exposed to the fibres.  相似文献   

20.
The vascular endothelium is a significant site for tissue injury following exposure to reactive oxygen species derived from a number of sources. In order to develop a better understanding of the mechanism(s) of oxidative damage, monolayer cultures of endothelial cells obtained from bovine pulmonary arteries were exposed to reactive oxygen species generated from the oxidation of dihydroxyfumarate (DHF) to diketosuccinate. Exposure to oxidizing DHF caused a loss of cell membrane integrity that was delayed in onset; that is, it did not begin until 2 h after the addition of DHF although reactive oxygen species are produced immediately by DHF in solution. Endothelial cell lysis by DHF was prevented by the simultaneous addition of superoxide dismutase (SOD), catalase (CAT), or deferoximine (DFX). This oxidant-induced lysis was unaffected by N,N,-diphenyl-p-phenylenediamine (DPPD), a potent inhibitor of lipid peroxidation. However, simultaneous addition of 3-aminobenzamide (3AB) and nicotinamide (NA), inhibitors of poly(ADP-ribose) polymerase, prevented cell lysis. Oxidant-induced loss of membrane integrity was preceded by the early appearance of DNA strand breaks, by increased levels of poly(ADP-ribose), the product of polymerase activity, and by depletion of NAD+ and ATP, followed by a decline in the energy charge ratio of the cells. None of these intracellular changes occurred when either SOD, CAT, or DFX were added at the same time as DHF, suggesting that O2-., H2O2, and HO. mediated these changes. The O2-. appears to be important in the autoxidation reaction of DHF. The latter two reactive oxygen species may be part of cellular-catalyzed Fenton chemistry. The increase in poly(ADP-ribose), depletion of NAD+, and the decline in ATP were also prevented by the addition of 3AB. The oxidant-induced DNA strand breakage was, however, unaffected by either 3AB or NA. Addition of 3AB immediately prior to the onset of cell lysis (2 h after the addition of DHF), prevented cell lysis, i.e., "rescued" the cells when neither SOD, CAT, nor DFX addition were effective. Concurrent with the "rescue" from lysis by 3AB, there was an increase in NAD+ content and a return of the energy charge ratio to control levels. The data presented in this study suggests that in endothelial cells, DNA is a very sensitive target for reactive oxygen species and HO. is the likely proximal damaging species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号