首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that the outer layers of yeast ascospore walls contain dityrosine and that this amino acid is a major component of the cross-linked peptides present in the spore wall (Briza, P., Winkler, G., Kalchhauser, H., and Breitenbach, M. (1986) J. Biol. Chem. 261, 4288-4294). We now present evidence that dityrosine is located in the outermost layer and that it is in the DL-configuration. Although the proteins (peptides) of the spore wall are insoluble, the macromolecule containing dityrosine can be solubilized by partial acid hydrolysis of spore walls. Analysis of this macromolecule indicates that it contains more than 50 mol% dityrosine and a very limited number of other amino acids. Interestingly, part of the dityrosine of spore walls is present in the DL-configuration. We speculate that not only the high degree of cross-links in the outermost layer but also the D-configuration of part of the alpha-C-atoms of dityrosine could contribute to the spores' resistance to lytic enzymes.  相似文献   

2.
The yeast ascospore wall consists of four morphologically distinct layers. The hydrophobic surface layers are biogenically derived from the prospore wall and appear dark after OsO4 staining. They seem to be responsible for the stability of the spores against attack by lytic enzymes. By amino acid analysis of acid hydrolysates of ascospore walls, two new peaks were detected, which were shown to be the racemic and meso form, respectively, of dityrosine. The identity of this hitherto unknown component of the yeast ascospore wall with standard dityrosine was proven by 1H NMR and by mass spectrometry. A 13C NMR spectroscopic investigation of the structure of dityrosine confirmed that, in natural dityrosine, the biphenyl linkage is located ortho, ortho to the hydroxyl groups. Following digestion of the inner layers of isolated ascospore walls it was shown that dityrosine is very probably located only in the surface layers. The same conclusion was reached independently by an investigation of spores of a strain homozygous for the mutation gcn1, which lack the outermost layers of the spore wall and were practically devoid of dityrosine. In sporulating yeast, L-tyrosine was readily incorporated into the dityrosine of the ascospore wall. Control experiments involving vegetative a/alpha cells and nonsporulating alpha/alpha cells under sporulation conditions showed that dityrosine is indeed sporulation-specific.  相似文献   

3.
The ascopore wall of Saccharomyces cerevisiae was found to contain more protein, polymeric glucosamine, and beta-glucan than the vegetative cell wall, which was enriched in mannoprotein relative to ascospore walls. Tunicamycin inhibited sporulation, as judged by the absence of refractile ascospores visible by phase-contrast microscopy, but cells completed meiosis, as demonstrated by the presence of multinucleate asci. Such spores lacked the dense outer layer characteristic of normal spores. Thus, the tunicamycin effect was similar to that of glucosamine auxotrophy (W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975).  相似文献   

4.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

5.
Summary The fine structure of ascopore wall development in the pyrenomycete Sordaria fimicola has been studied in asci fixed in either glutaraldehyde-OsO4 or KMnO4. Three distinct wall layers are deposited between the outer spore investing membrane and the inner spore plasma membrane which initially delimit each of the eight ascopores. Primary wall deposition occurs initially, followed by the deposition of secondary wall material to the outside of the primary wall. The tertiary wall is initiated as an electron dense layer along the interface between the primary and secondary walls. Pigment accumulates in this region. Increase in overall thickness of the ascospore wall occurs mainly in the secondary and tertiary layers, the former becoming fibrous and gelationous, and the latter multilayered, at maturity.  相似文献   

6.
The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation.  相似文献   

7.
细胞壁是酵母细胞区别于哺乳动物细胞的重要特征结构。酵母细胞壁的结构组成、合成、再生等与酵母自身繁殖及环境胁迫压力密切相关。目前,酵母孢子壁的形成机理、调控过程机制及孢子壁合成相关基因的功能尚未研究清楚。本文以酿酒酵母为例,简要描述酵母孢子壁的形成过程,重点阐述孢子壁甘露糖层、葡聚糖层、壳聚糖层和二酪氨酸层的结构组成及其合成相关基因的国内外研究进展,以期为抗真菌药物的新靶点研究提供参考。  相似文献   

8.
VanWinkle-Swift  K.P.  Salanga  M.C.  Thompson  E. G.  Bai  M. S.    & Parish  E.W. 《Journal of phycology》2000,36(S3):67-68
The primary zygote wall of C. monoica is transient and is released from mature zygospores. The fluorochromes aniline blue and primulin, used in other systems to detect β-1,3 glucans, stain the primary wall intensely. Two β-1,3 glucan synthases have been identified in higher plants: a calcium-dependent synthase produced in response to wounding and induced by chitosan, and a magnesium-dependent enzyme, associated with pollen development and unresponsive to chitosan. Chitosan has no effect on C. monoica primary wall synthesis or staining properties. We are presently testing for the effect of magnesium and/or calcium depletion on primary wall synthesis. Aniline blue and primulin do not stain purified cellulose fibers, while the fluorochrome Calcofluor does. Calcofluor also stains the primary wall intensely. For all fluorochormes tested, fluorescence is first detected in motile quadriflagellate zygotes. Aniline blue staining maximizes quickly, while Calcofluor staining continues to intensify until primary wall release. Dinitrobenzonitrile, a specific inhibitor of cellulose synthesis in plants, has no effect on primary wall synthesis in C. monoica. Addition of glucanase or cellulase to partially purified primary walls results in wall thinning and loss of staining. Using electron microscopy, we are evaluating the effects of these enzymes on primary wall ultrastructure. Further studies are needed to determine whether all three fluorochromes are recognizing the same polysaccharide component (a β-1,3 glucan or a β-1,3; β-1,4 mixed glucan), or whether Calcofluor staining indicates the presence of a distinct component containing β-1,4 linkages, such as cellulose or a xyloglucan.  相似文献   

9.
A study has been made of some chemical and ultrastructural changes that occur in the hyphal, arthrospore and sporangiospore walls ofMucor ramannianus during lysis by a soil streptomycete.Arthrospore and hyphal walls, which were shown to contain chitin, chitosan, other polysaccharides and phosphate (principally as polyphosphate), were lysed by culture fluid of the streptomycete after this organism had been grown on the same material. Alcohol-insoluble material found in the supernatants of the incubation mixtures gave on hydrolysis glucosamine, galactose, mannose and fucose. No laminarinase activity was detected in these culture fluids. Culture fluids of the streptomycete after growth on chitin and chitosan were also found to lyse the walls of arthrospores and hyphae.Despite the chemical similarities the walls were very different in thin section.A major component in the sporangiospore walls was glucan and an active laminarinase was shown to be present in the culture fluids of the streptomycete after growth on them. Further, ultrathin sections showed that an inner fibrillar layer of the sporangiospore wall was lysed leaving an outer electron-dense layer.  相似文献   

10.
R. Campbell 《Protoplasma》1973,78(1-2):69-80
Summary The croziers were formed from large multinucleate cells at the base of the hysterothecium. The diploid ascus had basal and apical vacuoles and there was prominant endoplasmic reticulum near the extending tip of the ascus. The spore delimiting membranes were continuous with the plasmalemma and possibly arose from it. The spore walls were formed between the two membranes. The ascus had a simple apical ring around a thinner region of the wall which became the pore through which the spores were released. Just before spore release the outer layer of the ascospore wall became vesiculated and eventually mucilagenous. The long clavate ascospores were released one at a time, stretching the neck of the ascus as they emerged.  相似文献   

11.
1. By the VAN WISSELINGH color reaction and the chitosan sulfatetest it was revealed that Chlorella cells contain chitosan probablyin their cell walls. 2. By fractionating the cell material into several fractionsfollowed by their hydrolysis, it was revealed that the majorityof glucosamine was present in the residue material remaininginsoluble in ethanol-ether and perchloric acid (PCA) solution.Conceivably, this glucosamine has derived, for the most part,from the chitosan contained in the cell wall material. 3. During the course of life cycle of the algal cells, the increasein content of glucosamine occurred in three steps: first, inproportion to the growth of smaller (young) cells into largercells; second, corresponding to the formation of autosporeswithin ripened cells; and third, in parallel with the growthof newly born daughter cells. 4. Between the first and second phase mentioned above, thereoccurred an abrupt breach in the increase of glucosamine. Thisphenomenon was presumed to be closely related to the profoundchange in the permeability of cell walls occuring at this transitionalstage of cell development. (Received September 5, 1960; )  相似文献   

12.
The ultrastructure of developing basidiospores in Rhizopogon roseolus is described. When viewed in the fruiting body chamber using scanning electron microscopy, basidiospores appear narrowly ellipsoid and have smooth walls. Eight basidiospores are usually produced on the apex of each sterigma on the basidium. Transmission electron micrographs showed that basidiospores formed by movement of cytoplasm (including the nuclei) via the sterigmata, and then each basidiospore eventually became separated from its sterigma by an electron-lucent septum. The sterigma and basidium subsequently collapsed, resulting in spore release. Freshly released spores retained the sterigmal appendage connected to the collapsed basidium. After spore release, the major ultrastructural changes in the spore concerned the lipid bodies and the spore wall. During maturation, lipid bodies formed and then expanded. Before release, the spore wall was homogeneous and electronlucent, but after release the spore wall comprised two distinct layers with electron-dense depositions at the inner wall, and the dense depositions formed an electron-dense third layer. The mature spore wall complex comprised at least four distinct layers: the outer electron-lucent thin double layers, the mottled electron-dense third layer, and the electron-lucent fourth layer in which electron-lucent granular substances were dispersed.  相似文献   

13.
扁绒泡菌孢子形成过程超微结构   总被引:1,自引:0,他引:1  
李艳双  于玲  王晓丽  李玉 《菌物学报》2011,30(1):138-141
诱导扁绒泡菌显型原质团形成子实体并观察在形成过程中孢囊的超微结构,结果表明,全部原质团参入形成孢子及孢丝;孢子形成初期原质团聚缩使原生质密度加大,脂滴密度也增加;液泡联合形成液泡网体分割原质团,孢子及孢丝一同形成;相邻孢子初始形成的孢子壁可见吻合的突起和凹陷,这是孢子成熟后的表面纹饰部分;孢子壁随孢囊发育逐渐达到适宜位置,孢子壁由透明内层及电子密度较大的外层组成;随后可见外有疣突,内含脂滴的圆形孢子。  相似文献   

14.
采用透射电镜和细胞化学技术对红盖鳞毛蕨(Dryopteris erythrosora(Eaton)O.Ktze.)的孢子发育过程进行了研究,根据超微结构和细胞化学特征可将其孢子发育过程分为3个阶段:(1)孢子母细胞及其减数分裂阶段:孢子母细胞壳在孢原细胞末期开始形成,位于孢子母细胞及其减数分裂形成的四分体外侧,PAS反应显示其为多糖性质,与胼胝质壁为同功结构;在减数分裂形成的四分孢子之间产生孢子外壳,从功能、形成位置和时间上看与胼胝质壁相似,但苏丹黑B反应显示其可能含有脂类物质,与孢子母细胞壳和胼胝质壁不同。(2)孢子外壁形成阶段:外壁为乌毛蕨型(Blechnoidal-type),由薄的多糖性质的外壁内层和表面平滑的孢粉素外壁外层构成;小球参与外壁外层的形成,组织化学分析显示小球的中央区域和外壁外层内侧部分由红色(多糖)变为黄色,小球的表面区域和外壁外层部分始终被染成黑色(脂类),可知小球与外壁同步发育。(3)孢子周壁形成阶段:周壁为凹陷型(Cavate-type),包括2层,内层薄,紧贴外壁,外层隆起形成孢子脊状褶皱纹饰的轮廓,以少见的向心方向发育;苏丹黑B和PAS反应观察周壁被染成橙色,推测其可能由多糖等成分构成;孢子囊壁细胞参与周壁的形成。本研究为揭示蕨类植物孢子发生的细胞学机制提供了新资料。  相似文献   

15.
Developing Tilletia caries teliospores were studied with thin sectioning procedures. After the W1 and W2 spore walls are formed, lamellar material begins to form adjacent to the W2 wall layer. The patches of lamellar material become continuous, and additional layers are added. After the W3 wall starts to form, the lamellar material is difficult to see without special staining. The lamellar material makes it difficult to get resins to penetrate the partition layer of teliospore walls.  相似文献   

16.
Summary The fine structure of ungerminated and aerobically germinated sporangiospores of Mucor rouxii was compared. The germination process may be divided into two stages: I, spherical growth; II, emergence of a germ tube. In both stages, germination is growth in its strictest sense with overall increases in cell organelles; e.g., the increase in mitochondria is commensurate with the overall increase in protoplasmic mass. Noticeable changes occurring during germination are the disappearance of electron-dense lipoid bodies, formation of a large central vacuole and, most strikingly, formation of a new cell wall. Unlike many other fungi, M. rouxii does not germinate by converting the spore wall into a vegetative wall. Instead, as in other Mucorales, a vegetative wall is formed de novo under the spore wall during germination stage I. This new wall grows out, rupturing the spore wall, to become the germ tube wall. Associated with the apical wall of the germ tube is an apical corpuscle previously described. The vegetative wall exhibits a nonlayered, uniformly microfibrillar appearance in marked distinction to the spore wall which is triple-layered, with two thin electron dense outer layers, and a thick transparent inner stratum. The lack of continuity between the spore and vegetative walls is correlated with marked differences in wall chemistry previously reported. A separate new wall is also formed under the spore wall during anaerobic germination leading to yeast cell formation. On the other hand, in the development of one vegetative cell from another, such as in the formation of hyphae from yeast cells, the cell wall is structurally continuous. This continuity is correlated with a similarity in chemical composition of the cell wall reported earlier.  相似文献   

17.
The ultrastructure ofCucullosporella mangrovei ascospores is described. Mature ascospores possess two wall layers, an outer electron-dense episporium and an innermost tripartite mesosporium. Episporial elaborations form electrondense spore wall ornamentations from which extend fibrils that may constitute a highly hydrated exosporium which was not visualised at either the scanning electron microscope or light microscope level. Ascospores possess a hamate appendage at each pole which unfolds in seawater to form a long thread. Ultrastructurally the polar appendage comprises folded fibro-granular electron-dense material and fine fibrils. The fibrils form a matrix around and within the fibro-granular appendage and around the entire unreleased ascospore. These fibrils have not been observed associated with the ascospore appendages in other species of the Halosphaeriales and are a discrete and new appendage component. The fibro-granular appendage and fibrils are bounded by the outer delimiting membrane which is absent around released ascospores. The nature of the spore appendage is compared with that of other marine and freshwater ascomycetes and the taxonomic assignment of the species is discussed.  相似文献   

18.
Summary Observations of ascospore fromation in KMnO4-fixed Saccobolus kerverni apothecia with the electron microscope reveal the following sequence. Ascus formation is preceded by the development of croziers whose fine structure differs little from that of vegetative hyphae. Following fusion of the two nuclei in the ascus mother cell, the resultant ascus elongates, and two large vacuoles appear, first below and later above the fusion nucleus. These vacuoles soon occupy dominant positions at the tip and bottom of the ascus and assume a flocculent appearance. Nuclear blebbing occurs during meiosis, mitosis, and the subsequent spore delimitation process in the central cytoplasmic portion of the ascus. Each spore initial is surrounded by two membranes, the plasma and investing membranes, between which the spore wall is deposited in two layers, an inner primary wall and an outer secondary wall. Following primary wall deposition the spores clump; secondary wall deposition begins outside the primary wall at the places where the spores are contiguous. Interdigitation of these walls and disappearance of the investing membranes in the sutures lead to the envelopment of all eight ascospores in a common secondary wall. A flocculent material in the epiplasmic vacuoles aggregates around the mature spore balls.Based on a portion of a dissertation presented to the Faculty of the Graduate School of the University of Texas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

19.
In this study, we present a nonhazardous biological method of producing chitosan beads using the budding yeast Saccharomyces cerevisiae. Yeast cells cultured under conditions of nutritional starvation cease vegetative growth and instead form spores. The spore wall has a multilaminar structure with the chitosan layer as the second outermost layer. Thus, removal of the outermost dityrosine layer by disruption of the DIT1 gene, which is required for dityrosine synthesis, leads to exposure of the chitosan layer at the spore surface. In this way, spores can be made to resemble chitosan beads. Chitosan has adsorptive features and can be used to remove heavy metals and negatively charged molecules from solution. Consistent with this practical application, we find that spores are capable of adsorbing heavy metals such as Cu2+, Cr3+, and Cd2+, and removal of the dityrosine layer further improves the adsorption. Removal of the chitosan layer decreases the adsorption, indicating that chitosan works as an adsorbent in the spores. Besides heavy metals, spores can also adsorb a negatively charged cholesterol derivative, taurocholic acid. Furthermore, chitosan is amenable to chemical modifications, and, consistent with this property, dit1Δ spores can serve as a carrier for immobilization of enzymes. Given that yeast spores are a natural product, our results demonstrate that they, and especially dit1Δ mutants, can be used as chitosan beads and used for multiple purposes.  相似文献   

20.
Zusammenfassung Zellwände und Keimschläuche von Uredosporen des Weizenrostes (Puccinia graminis var. tritici) wurden isoliert, und ihre chemische Zusammensetzung wurde quantitativ untersucht. Als gemeinsame Bausteine enthalten Sporenwände und Keimschlauchwände Proteine, Lipide und die Neutralzucker Galaktose, Glucose und Mannose. Die einzelnen Komponenten liegen in unterschiedlicher Menge vor. Auch qualitativ unterscheiden sich die Sporenwände und die Keimschlauchwände: Melanin ist nur in den Sporenwänden vorhanden, in den Keimschlauchwänden dagegen nicht. Der polymer gebundene Aminozucker der Keimschlauchwände ist N-Acetylglucosamin, das mit großer Wahrscheinlichkeit als Chitin vorliegt. Die Sporenwände enthalten dagegen polymeres Glucosamin (vermutlich Chitosan).Sporenwände sind in 3% iger NaOH löslich. Aus diesem Extrakt läßt sich mit Fehlingscher Lösung ein Galaktoglucomannan fällen, das überwiegend aus Mannose besteht. Aus der entsprechenden Fraktion der Keimschlauchwände, in der ebenfalls Mannose überwiegt, kann mit Fehlingscher Lösung kein Mannan gewonnen werden. Der in NaOH unlösliche Satz der Keimschlauchwände ist zum größten Teil aus Glucose und N-Acetylglucosamin aufgebaut. Es gibt keine identischen Polysaccharidfraktionen von Sporen- und Keimschlauchwänden. Sie sind heteropolymer und setzen sich jeweils aus Galaktose, Glucose und Mannose zusammen.
Investigations on the chemical composition of spore walls and germ tube walls of wheat rust (Puccinia graminis var. tritici) uredospores
Summary Spore walls and germ tube walls from uredospores of wheat stem rust (Puccinia graminis var. tritici) were isolated and their chemical compositions determined quantitatively. The spore and germ tube walls are commonly composed of proteins, lipids, and the neutral sugars mannose, glucose and galactose. Carbon and nitrogen content, total lipids, composition of bound amino acids, total glucosamine and chitin content, and neutral sugars of spore and germ tube walls were compared. While the carbon content of the germ tube walls is only slightly higher than that of the spore walls, the germ tube walls contain twice as much nitrogen and lipids as the spore walls. The higher nitrogen content of the germ tube walls is due to higher amounts of bound amino acids and hexosamine. The polymeric germ tube wall hexosamine is insoluble in 3% NaOH, while the bulk of the polymeric spore wall hexosamine will go into solution when treated with 3% NaOH. The polymeric amino sugar of the germ tube wall is N-acetylglucosamine, which in all probability is present as chitin. In comparison, spore walls contain polymeric glucosamine (probably chitosan).The predominant neutral sugar of the spore walls is polymeric mannose (90%) while the germ tube walls contain polymeric glucose and mannose in nearly equal amounts. Galactose occurs in both wall types as a minor constituent.From spore walls completely dissolved in 3% NaOH we were able to precipitate a galactoglucomannan with fehling's solution. This galactoglucomannan was composed mainly of mannose. The corresponding fraction of the germ tube wall gave no precipitate with Fehling's solution. An alkali insoluble fraction of the germ tube wall consists mainly of glucose and N-acetylglucosamine. There are no identical polysaccharide fractions in spore walls and germ tube walls. They are always heteropolymers. Melanine is found in spore walls but not in germ tube walls.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号