首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specialized species often reveal general principles of brain organization and provide systems for analysis of sensory function. Subterranean species dependent on touch have particularly large somatosensory areas with modular cortical representations of sensory surfaces. Some species have added cortical areas to processing networks, have developed tactile foveas and have superior colliculi primarily devoted to somatosensation rather than vision. Recent studies reveal surprisingly large cortical representations of oral structures in primates and mole-rats. Cortical modules represent a range of different sensory surfaces in rodents, star-nosed moles and primates, indicating that similar developmental mechanisms operate in diverse species. Finally, manipulation of patterning genes in mice suggests evolutionary mechanisms for producing the specialized corticies of subterranean species.  相似文献   

2.
Callaway EM 《Neuron》2006,49(6):780-783
Previous studies demonstrating turnover of the dendritic spines of cortical neurons have suggested a modest rate of turnover of synaptic connections. Now, two papers in this issue of Neuron address this question from the other side of the synapse, the presynaptic boutons. Both studies use in vivo multiphoton imaging of cortical axons to show that synaptic boutons come and go, just like spines. One of the studies shows remarkable diversity in the lability of boutons depending on the cell type from which they originate, with some boutons displaying nearly complete turnover in just a few months. The other study shows that bouton turnover occurs in primates as well as rodents.  相似文献   

3.
The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.  相似文献   

4.
A complex study on various evolutionary peculiarities of the mammalia dispersed Alu repeats (Alu repeats of primates and B1 of rodents) has been carried out by phylogenetic analysis. A phylogenetic tree, containing the 7SL RNA genes and the Alu repeats of primates and rodents has been constructed. It has been shown that the branch of the phyletic line leading to the Alu repeats of primates and B1 of rodents from the 7SL RNA genes occurred after the divergence of the 7SL RNA genes of amphibia and mammalia, but before the divergence of the 7SL RNA genes of primates and rodents (250.10 years ago). A statistically reliable slowing down in the evolutionary rates of one of two monomers for the human Alu repeats has been proved. It may be caused by the functional load of the corresponding monomer in connection with the presence of a definit regulatory site in it.  相似文献   

5.
The phylogenetic relationship among primates, ferungulates (artiodactyls + cetaceans + perissodactyls + carnivores), and rodents was examined using proteins encoded by the H strand of mtDNA, with marsupials and monotremes as the outgroup. Trees estimated from individual proteins were compared in detail with the tree estimated from all 12 proteins (either concatenated or summing up log-likelihood scores for each gene). Although the overall evidence strongly suggests ((primates, ferungulates), rodents), the ND1 data clearly support another tree, ((primates, rodents), ferungulates). To clarify whether this contradiction is due to (1) a stochastic (sampling) error; (2) minor model-based errors (e.g., ignoring site rate variability), or (3) convergent and parallel evolution (specifically between either primates and rodents or ferungulates and the outgroup), the ND1 genes from many additional species of primates, rodents, other eutherian orders, and the outgroup (marsupials + monotremes) were sequenced. The phylogenetic analyses were extensive and aimed to eliminate the following artifacts as possible causes of the aberrant result: base composition biases, unequal site substitution rates, or the cumulative effects of both. Neither more sophisticated evolutionary analyses nor the addition of species changed the previous conclusion. That is, the statistical support for grouping rodents and primates to the exclusion of all other taxa fluctuates upward or downward in quite a tight range centered near 95% confidence. These results and a site-by-site examination of the sequences clearly suggest that convergent or parallel evolution has occurred in ND1 between primates and rodents and/or between ferungulates and the outgroup. While the primate/rodent grouping is strange, ND1 also throws some interesting light on the relationships of some eutherian orders, marsupials, and montremes. In these parts of the tree, ND1 shows no apparent tendency for unexplained convergences. Received: 5 December 1997 / Accepted: 24 February 1998  相似文献   

6.
Periostin (POSTN or osteoblast specific factor) is an extracellular matrix protein originally identified as a protein highly expressed in osteoblasts. Recently, periostin has been reported to function in axon regeneration and neuroprotection. In the present study, we focused on periostin function in cortical evolution. We performed a comparative gene expression analysis of periostin between rodents (mice) and primates (marmosets and macaques). Periostin was expressed at higher levels in the primate cerebral cortex compared to the mouse cerebral cortex. Furthermore, we performed overexpression experiments of periostin in vivo and in vitro. Periostin exhibited neurite outgrowth activity in cortical neurons. These results suggested the possibility that prolonged and increased periostin expression in the primate cerebral cortex enhances the cortical plasticity of the mammalian cerebral cortex.  相似文献   

7.
Neddens J  Buonanno A 《PloS one》2011,6(11):e27337
We demonstrated recently that frontal cortical expression of the Neuregulin (NRG) receptor ErbB4 is restricted to interneurons in rodents, macaques, and humans. However, little is known about protein expression patterns in other areas of the brain. In situ hybridization studies have shown high ErbB4 mRNA levels in various subcortical areas, suggesting that ErbB4 is also expressed in cell types other than cortical interneurons. Here, using highly-specific monoclonal antibodies, we provide the first extensive report of ErbB4 protein expression throughout the cerebrum of primates. We show that ErbB4 immunoreactivity is high in association cortices, intermediate in sensory cortices, and relatively low in motor cortices. The overall immunoreactivity in the hippocampal formation is intermediate, but is high in a subset of interneurons. We detected the highest overall immunoreactivity in distinct locations of the ventral hypothalamus, medial habenula, intercalated nuclei of the amygdala and structures of the ventral forebrain, such as the islands of Calleja, olfactory tubercle and ventral pallidum, and medium expression in the reticular thalamic nucleus. While this pattern is generally consistent with ErbB4 mRNA expression data, further investigations are needed to identify the exact cellular and subcellular sources of mRNA and protein expression in these areas. In contrast to in situ hybridization in rodents, we detected only low levels of ErbB4-immunoreactivity in mesencephalic dopaminergic nuclei but a diffuse pattern of immunofluorescence that was medium in the dorsal striatum and high in the ventral forebrain, suggesting that most ErbB4 protein in dopaminergic neurons could be transported to axons. We conclude that the NRG-ErbB4 signaling pathway can potentially influence many functional systems throughout the brain of primates, and suggest that major sites of action are areas of the "corticolimbic" network. This interpretation is functionally consistent with the genetic association of NRG1 and ERBB4 with schizophrenia.  相似文献   

8.
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.  相似文献   

9.
Cytochrome c oxidase subunit II (COII), encoded by the mitochondrial genome, exhibits one of the most heterogeneous rates of amino acid replacement among placental mammals. Moreover, it has been demonstrated that cytochrome c oxidase has undergone a structural change in higher primates which has altered its physical interaction with cytochrome c. We collected a large data set of COII sequences from several orders of mammals with emphasis on primates, rodents, and artiodactyls. Using phylogenetic hypotheses based on data independent of the COII gene, we demonstrated that an increased number of amino acid replacements are concentrated among higher primates. Incorporating approximate divergence dates derived from the fossil record, we find that most of the change occurred independently along the New World monkey lineage and in a rapid burst before apes and Old World monkeys diverged. There is some evidence that Old World monkeys have undergone a faster rate of nonsynonymous substitution than have apes. Rates of substitution at four-fold degenerate sites in primates are relatively homogeneous, indicating that the rate heterogeneity is restricted to nondegenerate sites. Excluding the rate acceleration mentioned above, primates, rodents, and artiodactyls have remarkably similar nonsynonymous replacement rates. A different pattern is observed for transversions at four-fold degenerate sites, for which rodents exhibit a higher rate of replacement than do primates and artiodactyls. Finally, we hypothesize specific amino acid replacements which may account for much of the structural difference in cytochrome c oxidase between higher primates and other mammals.   相似文献   

10.
The long-term isolation of South America during most of the Cenozoic produced a highly peculiar terrestrial vertebrate biota, with a wide array of mammal groups, among which caviomorph rodents and platyrrhine primates are Mid-Cenozoic immigrants. In the absence of indisputable pre-Oligocene South American rodents or primates, the mode, timing and biogeography of these extraordinary dispersals remained debated. Here, we describe South America's oldest known rodents, based on a new diverse caviomorph assemblage from the late Middle Eocene (approx. 41 Ma) of Peru, including five small rodents with three stem caviomorphs. Instead of being tied to the Eocene/Oligocene global cooling and drying episode (approx. 34 Ma), as previously considered, the arrival of caviomorphs and their initial radiation in South America probably occurred under much warmer and wetter conditions, around the Mid-Eocene Climatic Optimum. Our phylogenetic results reaffirm the African origin of South American rodents and support a trans-Atlantic dispersal of these mammals during Middle Eocene times. This discovery further extends the gap (approx. 15 Myr) between first appearances of rodents and primates in South America.  相似文献   

11.
Summary In an attempt to resolve some points of branching order in the phylogeny of the eutherian mammals, a phylogenetic analysis of 26 nuclear and 6 mitochondrial genes was undertaken using a maximum likelihood method on a constant rate stochastic model of molecular evolution. Seventeen of the nuclear genes gave a primates/artiodactyls grouping highest support whereas three of the mitochondrial genes found a rodents/artiodactyls grouping to be best supported. The primates/rodents grouping was never the best supported. On the assumption that rodents are indeed an outgroup to primates and artiodactyls and that the latter taxa diverged 70 million years ago, an estimation was made, for each gene, of the time of divergence of the rodent lineage. In most cases such estimates were beyond the limits set by present interpretations of the paleontological record as were many estimates of the divergence time of mouse and rat. These results suggest that, although there is locus variation, the divergent position of the rodent lineage may be an artifact of an elevated rate of nucleotide substitution in this order.  相似文献   

12.
13.
Heterogeneous rate of protein evolution in serotonin genes   总被引:1,自引:0,他引:1  
Serotonin (5-hydroxytryptamine) is a neurotransmitter crucial for cardiovascular, gastrointestinal, and brain function. It is also involved in several aspects of behavior and associated with a variety of personality disorders in humans. Its dual role as a crucial element in vital physiological functions (strictly evolutionary conserved) and in traits that differ substantially across species makes the evolution of serotonin function particularly interesting. We studied the evolution of serotonin function through the identification of the selective forces shaping the evolution of genes in its functional pathway in primates and rodents. Serotonin genes are highly conserved and show no signals of positive selection, suggesting functional constraint as the main force driving their evolution. They show, nevertheless, considerable differences in constraint between primates and rodents, with some genes showing dramatic differences between the 2 groups. These genes most likely represent cases of functional divergence between primates and rodents and point out to the relevance of using closely related species in gene-based evolutionary studies to avoid the effect of unrecognized functional differences between distant species. Within each group (rodents or primates), genes also show heterogeneity in evolution. Genes from the same gene family (with structure and function alike) tend to evolve at a similar rate, but this is not always the case. A few serotonin genes show substantial differences in constraint with the rest of members of their family, suggesting the presence of important and unrecognized functional differences among the genes, which may be involved in species-specific evolution.  相似文献   

14.
非人灵长类局部脑缺血动物模型研究现状   总被引:1,自引:0,他引:1  
非人灵长类动物在种系发生上较啮齿类更接近于人类,用来制备局部脑缺血模型可以更好的拟合临床症状和机理。通过对国内外非人灵长类动物局部脑缺血模型的制备方法和应用现状进行收集、分类和述评,展望非人灵长类动物模型的应用前景,尤其是利用低等灵长类动物树鼩研究缺血性中风的优势。  相似文献   

15.
Although enormous progress has been made in understanding the events and regulation of the later stages of ovarian follicular development, the early stages of development, to a large extent and particularly in large mammals, remain a mystery. Mechanisms that regulate the initiation of follicular growth (follicle activation) and the ensuing growth and differentiation of preantral follicles are of considerable interest, since their elucidation is a prerequisite to use of the primordial pool to enhance reproductive efficiency in domestic animals, humans, and endangered species. This review is an attempt to summarize the approaches that have been taken to further this goal and the results thus far of these efforts. Preantral follicular development can be divided into three stages: activation of primordial follicles, the primary to secondary follicle transition, and the development of secondary follicles to the periantral stage. The activation of primordial follicles in vitro has been achieved thus far in rodents, cattle, and primates, where it occurs spontaneously without the addition of growth factors or hormones. The ovaries of rodents are small enough to be cultured intact and, in that experimental situation, some follicles activate, while many remain in the resting pool, and the addition of specific factors can increase or decrease the number of follicles that leave the resting pool in vitro. In contrast, follicular activation in cattle and primates has been studied by culturing small pieces of the ovarian cortex, rich in primordial follicles, and the great majority of the primordial follicles activate in that situation, suggesting the importance of inhibitory factors to the normal, gradual exit of follicles from the resting pool. In cultured rodent ovaries, follicles appear to pass easily and spontaneously from the primary to the secondary stage, whereas few of the activated follicles in cultured cortical pieces from cattle or primates progress from the primary to the secondary stage. Understanding the requirements for the primary to secondary transition is critical for growing follicles activated in vitro to the late preantral and antral stages. In contrast, the requirements for the continued growth of larger preantral follicles, which can be isolated for in vitro studies, have been extensively explored in rodents and to a lesser extent in domestic species. A number of hormones and factors have been implicated and will be discussed. Taken together, the results highlight the need for a better understanding of the earliest stages of follicular development in domestic ruminants, particularly follicle activation and the primary to secondary follicle transition.  相似文献   

16.
Platyrrhine primates and caviomorph rodents are clades of mammals that colonized South America during its period of isolation from the other continents, between 100 and 3 million years ago (Mya). Until now, no molecular study investigated the timing of the South American colonization by these two lineages with the same molecular data set. Using sequences from three nuclear genes (ADRA2B, vWF, and IRBP, both separate and combined) from 60 species, and eight fossil calibration constraints, we estimated the times of origin and diversification of platyrrhines and caviomorphs via a Bayesian relaxed molecular clock approach. To account for the possible effect of an accelerated rate of evolution of the IRBP gene along the branch leading to the anthropoids, we performed the datings with and without IRBP (3768 sites and 2469 sites, respectively). The time window for the colonization of South America by primates and by rodents is demarcated by the dates of origin (upper bound) and radiation (lower bound) of platyrrhines and caviomorphs. According to this approach, platyrrhine primates colonized South America between 37.0 +/- 3.0 Mya (or 38.9 +/- 4.0 Mya without IRBP) and 16.8 +/- 2.3 (or 20.1 +/- 3.3) Mya, and caviomorph rodents between 45.4 +/- 4.1 (or 43.7 +/- 4.8) Mya and 36.7 +/- 3.7 (or 35.8 +/- 4.3) Mya. Considering both the fossil record and these molecular datings, the favored scenarios are a trans-Atlantic migration of primates from Africa at the end of the Eocene or beginning of the Oligocene, and a colonization of South America by rodents during the Middle or Late Eocene. Based on our nuclear DNA data, we cannot rule out the possibility of a concomitant arrival of primates and rodents in South America. The caviomorphs radiated soon after their arrival, before the Oligocene glaciations, and these early caviomorph lineages persisted until the present. By contrast, few platyrrhine fossils are known in the Oligocene, and the present-day taxa are the result of a quite recent, Early Miocene diversification.  相似文献   

17.
Identical facilitation of the primary response to peripheral stimuli in rats and monkeys has been induced by local superficial cooling of the cortex in the somatosensory area S1. Higher facilitation of the evoked potentials was observed in the neostriatum of rats. Correlation of the evoked potentials with primary responses was more significant with respect to temporal than amplitude parameters. In monkeys, "cool" facilitation of the cortical primary response did not result in facilitation of the evoked potential in the neostriatum. Temporal correlation between the primary response and the evoked potential was less significant, whereas correlation in the amplitude was absent. The data obtained indicate the existence of differences in functional organization of corticofugal influences upon the neostriatum in rodents and primates.  相似文献   

18.
A higher rate of molecular evolution in rodents than in primates at synonymous sites and, to a lesser extent, at amino acid replacement sites has been reported previously for most nuclear genes examined. Thus in these genes the average ratio of amino acid replacement to synonymous substitution rates in rodents is lower than in primates, an observation at odds with the neutral model of molecular evolution. Under Ohta's mildly deleterious model of molecular evolution, these observations are seen as the consequence of the combined effects of a shorter generation time (driving a higher mutation rate) and a larger effective population size (resulting in more effective selection against mildly deleterious mutations) in rodents. The present study reports the results of a maximum-likelihood analysis of the ratio of amino acid replacements to synonymous substitutions for genes encoded in mitochondrial DNA (mtDNA) in these two lineages. A similar pattern is observed: in rodents this ratio is significantly lower than in primates, again consistent only with the mildly deleterious model. Interestingly the lineage-specific difference is much more pronounced in mtDNA-encoded than in nuclear-encoded proteins, an observation which is shown to run counter to expectation under Ohta's model. Finally, accepting certain fossil divergence dates, the lineage-specific difference in amino acid replacement-to-synonymous substitution ratio in mtDNA can be partitioned and is found to be entirely the consequence of a higher mutation rate in rodents. This conclusion is consistent with a replication-dependent model of mutation in mtDNA. Received: 24 September 1999 / Accepted: 18 September 2000  相似文献   

19.
The study of renin inhibitory peptides (RIPs) in rodents and primates requires the establishment of a simple, high volume method for determining the concentration of RIPs in serum after intravenous or oral dosing. The human renin inhibition assay useful for rodents is not directly applicable to primates due to inherent production of angiotensin I from the primate serum angiotensinogen and added recombinant human renin. Therefore, a novel approach to analyze the serum concentrations of RIPs in primates is described based on in vitro studies with monkey serum. The procedure involves the inactivation of monkey angiotensinogen and monkey renin by thermal denaturation prior to analysis. Application of this assay was demonstrated by analyzing serum samples from an in vivo study in monkeys using ditekiren (U-71,038), a renin inhibitory peptide, and by validation of the assay and results using a tritium-based radioimmunoassay (RIA) for ditekiren. The minimum detectable limit of ditekiren for both the RIA and the bioassay for primates was 10ng/ml serum. The reported bioassay should be of value for monitoring serum levels of thermostable RIPs from pharmacokinetic, bioavailability, and pharmacodynamic studies in primates as well as in humans.  相似文献   

20.
Genetic transmission of retroviral genes and cellular oncogenes   总被引:1,自引:0,他引:1  
Several different families of retrovirus genome have been found to exist, each in multiple copies, in the cellular DNA of rodents and primates. There are at least four distinct families of genome in rodents: two type C families, the MTV family and another related to mouse type A particles. In primates there are also at least two families of endogenous type C virogenes and a third type D virogene family. Both in rodents and in primates, the virus-related sequences constitute almost 0.1% of the cellular genome. We have been able to generate transforming viruses, starting with endogenous mouse 'helper' type C viruses by passing them through chemically transformed mouse cells and selecting for variant viruses that have acquired the ability to induce normal cells to display anchorage-independent growth. These viruses produce both sarcomas and carcinomas in the animal; clones that produce only pulmonary carcinomas have also been selected. These presumably have arisen by recombination between the helper and 'transforming' sequences derived from the cells. Moloney sarcoma virus-transformed cells produce a new peptide, called sarcoma growth factor (SGF), that makes normal cells take on some of the properties of transformed cells. Studies with temperature-sensitive viral mutants show that the production of SGF is under the control of the transforming genes of the sarcoma virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号