首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome sequencing of Chlamydia trachomatis serovar D has identified polymorphic membrane proteins (Pmp) that are a newly recognized protein family unique to the Chlamydiaceae family. Cumulative data suggest that these diverse proteins are expressed on the cell surface and might be immunologically important. We performed phylogenetic analyses and statistical modeling with 18 reference serovars and 1 genovariant of C. trachomatis to examine the evolutionary characteristics and comparative genetics of PmpC and pmpC, the gene that encodes this protein. We also examined 12 recently isolated ocular and urogenital clinical samples, since reference serovars are laboratory adapted and may not represent strains that are presently responsible for human disease. Phylogenetic reconstructions revealed a clear distinction for disease groups, corresponding to levels of tissue specificity and virulence of the organism. Further, the most prevalent serovars, E, F, and Da, formed a distinct clade. According to the results of comparative genetic analyses, these three genital serovars contained two putative insertion sequence (IS)-like elements with 10- and 15-bp direct repeats, respectively, while all other genital serovars contained one IS-like element. Ocular trachoma serovars also contained both insertions. Previously, no IS-like elements have been identified for Chlamydiaceae. Surprisingly, 7 (58%) of 12 clinical isolates revealed pmpC sequences that were identical to the sequences of other serovars, providing clear evidence for a high rate of whole-gene recombination. Recombination and the differential presence of IS-like elements among distinct disease and prevalence groups may contribute to genome plasticity, which may lead to adaptive changes in tissue tropism and pathogenesis over the course of the organism's evolution.  相似文献   

2.
3.
4.
Although four of the five Salmonella pathogenicity islands (SPIs) have been characterized in detail for Salmonella enterica serovar Typhimurium, and the fifth has been characterized for Salmonella enterica serovar Dublin, there have been limited studies to examine them in detail in a range of pathogenic serovars of S. enterica. The aim of this study was to examine these regions, shown to be crucial in virulence, in pathogenic serovars to identify any major deletions or insertions that may explain variation in virulence and provide further understanding of the elements involved in the evolution of these regions. Multiple strains of each of the 13 serovars were compared by Southern blot hybridization using a series of probes that together encompassed the full length of all five SPIs. With the exception of serovar Typhimurium, all strains of the same serovar were identical in all five SPIs. Those serovars that differed from serovar Typhimurium in SPI-1 to SPI-4 and from serovar Dublin in SPI-5 were examined in more detail in the variant regions by PCR, and restriction endonuclease digestion and/or DNA sequencing. While most variation in hybridization patterns was attributable to loss or gain of single restriction endonuclease cleavage sites, three regions, in SPI-1, SPI-3, and SPI-5, had differences due to major insertions or deletions. In SPI-1 the avrA gene was replaced by a 200-base fragment in three serovars, as reported previously. In SPI-5, two serovars had acquired an insertion with similarity to the pagJ and pagK genes between pipC and pipD. In SPI-3 the genes sugR and rhuM were deleted in most serovars and in some were replaced by sequences that were very similar to either the Escherichia coli fimbrial operon, flanked by two distinct insertion sequence elements, or to the E. coli retron phage PhiR73. The distribution of these differences suggests that there have been a number of relatively recent horizontal transfers of genes into S. enterica and that in some cases the same event has occurred in multiple lineages of S. enterica. Thus, it seems that insertion sequences and retron phages are likely to be involved in continuing evolution of the pathogenicity islands of pathogenic Salmonella serovars.  相似文献   

5.
Genes of Salmonella enterica serovar Typhimurium LT2 expected to be specifically present in Salmonella were selected using the Basic Local Alignment Search Tool (BLAST) program. The 152 selected genes were compared with 11 genomic sequences of Salmonella serovars, including Salmonella enterica subsp. I and IIIb and Salmonella bongori (V), and were clustered into 17 groups by their comparison patterns. A total of 38 primer pairs were constructed to represent each of the 17 groups, and PCR was performed with various Salmonella subspecies including Salmonella enterica subsp. I, II, IIIa, IIIb, IV, VI, and V to evaluate a comprehensive DNA-based scheme for identification of Salmonella subspecies and the major disease-causing Salmonella serovars. Analysis of PCR results showed that Salmonella enterica subsp. I was critically divided from other subspecies, and Salmonella strains belonging to S. enterica subsp. I were clustered based on their serovars. In addition, genotypic relationships within S. enterica subsp. I by PCR results were investigated. Also, Salmonella signature genes, Salmonella enterica serovar Typhimurium signature genes, and Salmonella enterica subsp. I signature genes were demonstrated based on their PCR results. The described PCR method suggests a rapid and convenient method for identification of Salmonella serovars that can be used by nonspecialized laboratories. Genome sequence comparison can be a useful tool in epidemiologic and taxonomic studies of Salmonella.  相似文献   

6.
Salmonella enterica subsp. enterica is the leading cause of bacterial food-borne disease in the United States. Molecular subtyping methods are powerful tools for tracking the farm-to-fork spread of food-borne pathogens during outbreaks. In order to develop a novel multilocus sequence typing (MLST) scheme for subtyping the major serovars of S. enterica subsp. enterica, the virulence genes sseL and fimH and clustered regularly interspaced short palindromic repeat (CRISPR) loci were sequenced from 171 clinical isolates from nine Salmonella serovars, Salmonella serovars Typhimurium, Enteritidis, Newport, Heidelberg, Javiana, I 4,[5],12:i:-, Montevideo, Muenchen, and Saintpaul. The MLST scheme using only virulence genes was congruent with serotyping and identified epidemic clones but could not differentiate outbreaks. The addition of CRISPR sequences dramatically improved discriminatory power by differentiating individual outbreak strains/clones. Of particular note, the present MLST scheme provided better discrimination of Salmonella serovar Enteritidis strains than pulsed-field gel electrophoresis (PFGE). This method showed high epidemiologic concordance for all serovars screened except for Salmonella serovar Muenchen. In conclusion, the novel MLST scheme described in the present study accurately differentiated outbreak strains/clones of the major serovars of Salmonella, and therefore, it shows promise for subtyping this important food-borne pathogen during investigations of outbreaks.  相似文献   

7.
The polymerase chain reaction (PCR) method has been employed to amplify a chlamydial genome encoding four variable segments of the major outer membrane protein and genotyping of different Chlamydia trachomatis serovars was successfully achieved by means of restriction fragment length polymorphism (RFLP) analysis and sequencing of amplified DNA. These methods were applied to identify the serotypes of C. trachomatis in endocervical specimens obtained from asymptomatic pregnant Japanese women at 28-30 weeks of gestation. Among the 218 specimens, 207 were serotyped 43 (19.3%) as serovar D, 53 (24.3%) as E, 24 (11.0%) as F, 39 (17.9%) as G, 15 (6. 9%) as H, 15 (6.9%) as I, five (2.3%) as J, nine (4.1%) as K and four (1.8%) as mixed. Among the 11 unclassified strains by RFLP, six (2.8%) were identified as serovar B variants and five (2.3%) were identified as D/IC-Cal-8. It was suggested that variants of endemic trachoma serovars also have affinity for the urogenital tract of Japanese pregnant women.  相似文献   

8.
The genus Salmonella consists of over 2,200 serovars that differ in their host range and ability to cause disease despite their close genetic relatedness. The genetic factors that influence each serovar's level of host adaptation, how they evolved or were acquired, their influence on the evolution of each serovar, and the phylogenic relationships between the serovars are of great interest as they provide insight into the mechanisms behind these differences in host range and disease progression. We have used an Salmonella enterica serovar Typhimurium spotted DNA microarray to perform genomic hybridizations of various serovars and strains of both S. enterica (subspecies I and IIIa) and Salmonella bongori to gain insight into the genetic organization of the serovars. Our results are generally consistent with previously published DNA association and multilocus enzyme electrophoresis data. Our findings also reveal novel information. We observe a more distant relationship of serovar Arizona (subspecies IIIa) from the subspecies I serovars than previously measured. We also observe variability in the Arizona SPI-2 pathogenicity island, indicating that it has evolved in a manner distinct from the other serovars. In addition, we identify shared genetic features of S. enterica serovars Typhi, Paratyphi A, and Sendai that parallel their unique ability to cause enteric fever in humans. Therefore, whereas the taxonomic organization of Salmonella into serogroups provides a good first approximation of genetic relatedness, we show that it does not account for genomic changes that contribute to a serovar's degree of host adaptation.  相似文献   

9.
Six Lepidoptera-specific Bacillus thuringiensis isolates, which belong to the four H serovars (sotto, fukuokaensis, canadensis, and galleriae) and produce spherical parasporal inclusions, were examined for assignment of the classes of the delta-endotoxin genes. Gene analysis was conducted by PCR technique with primers designed to probe the genes cry9Ca and cry9Da. The data revealed that the delta-endotoxin of a serovar canadensis isolate is encoded by the gene cry9Da, while those of the five other strains are encoded by an undescribed delta-endotoxin gene. DNA fragments from five strains had an identical 1917-bp nucleotide sequence, covering the four conserved regions and a partial sequence of the block 5 region. The deduced amino acid sequence exhibited a 70.6% homology to that of the corresponding region of the Cry9Ea delta-endotoxin protein which is active on the order Lepidoptera, and a 63.1% homology to the Cry9Ca protein highly toxic to the noctuid lepidopterans. The results showed that Japanese isolates of B. thuringiensis producing spherical parasporal inclusions with Lepidoptera-specific activity are categorized into two groups: one produces the class Cry9Da protein and the other a novel delta-endotoxin allied to the class Cry9. It also appeared that heterogeneous multiple H serovars are involved in each group.  相似文献   

10.
ABSTRACT: BACKGROUND: Ureaplasma urealyticum (UUR) and Ureaplasma parvum (UPA) are sexually transmitted bacteria among humans implicated in a variety of disease states including but not limited to: nongonococcal urethritis, infertility, adverse pregnancy outcomes, chorioamnionitis, and bronchopulmonary dysplasia in neonates. There are 10 distinct serotypes of UUR and 4 of UPA. Efforts to determine whether difference in pathogenic potential exists at the ureaplasma serovar level have been hampered by limitations of antibody-based typing methods, multiple cross-reactions and poor discriminating capacity in clinical samples containing two or more serovars. RESULTS: We determined the genome sequences of the American Type Culture Collection (ATCC) type strains of all UUR and UPA serovars as well as four clinical isolates of UUR for which we were not able to determine serovar designation. UPA serovars had 0.750.78 Mbp genomes and UUR serovars were 0.840.95 Mbp. The original classification of ureaplasma isolates into distinct serovars was largely based on differences in the major ureaplasma surface antigen called the multiple banded antigen (MBA) and reactions of human and animal sera to the organisms. Whole genome analysis of the 14 serovars and the 4 clinical isolates showed the mba gene was part of a large superfamily, which is a phase variable gene system, and that some serovars have identical sets of mba genes. Most of the differences among serovars are hypothetical genes, and in general the two species and 14 serovars are extremely similar at the genome level. CONCLUSIONS: Comparative genome analysis suggests UUR is more capable of acquiring genes horizontally, which may contribute to its greater virulence for some conditions. The 4 overwhelming evidence of extensive horizontal gene transfer among these organisms from our previous studies combined with our comparative analysis indicates that 6 ureaplasmas exist as quasispecies rather than as stable serovars in their native environment. Therefore, differential pathogenicity and clinical outcome of a ureaplasmal infection is most likely not on the serovar level, but rather may be due to the presence or absence of potential pathogenicity factors in an individual ureaplasma clinical isolate and/or patient to patient differences in terms of autoimmunity and microbiome.  相似文献   

11.
12.
Diversity of Chlamydia trachomatis major outer membrane protein genes.   总被引:66,自引:3,他引:63       下载免费PDF全文
Genomic DNA libraries were constructed for Chlamydia trachomatis serovars B and C by using BamHI fragments, and recombinants that contained the major outer membrane protein (omp1) gene for each serovar were identified and sequenced. Comparisons between these gene sequences and the gene from serovar L2 demonstrated fewer base pair differences between serovars L2 and B than between L2 and C; this finding is consistent with the serologic and antigenic relationships among these serovars. The translated amino acid sequence for the major outer membrane proteins (MOMPs) contained the same number of amino acids for serovars L2 and B, whereas the serovar C MOMP contained three additional amino acids. The antigenic diversity of the chlamydial MOMP was reflected in four sequence-variable domains, and two of these domains were candidates for the putative type-specific antigenic determinant. The molecular basis of omp1 gene diversity among C. trachomatis serovars was observed to be clustered nucleotide substitutions for closely related serovars and insertions or deletions for distantly related serovars.  相似文献   

13.
Comparative genomic hybridization was used to compare genetic diversity of five strains of Leptospira (Leptospira interrogans serovars Bratislava, Canicola, and Hebdomadis and Leptospira kirschneri serovars Cynopteri and Grippotyphosa). The array was designed based on two available sequenced Leptospira reference genomes, those of L. interrogans serovar Copenhageni and L. interrogans serovar Lai. A comparison of genetic contents showed that L. interrogans serovar Bratislava was closest to the reference genomes while L. kirschneri serovar Grippotyphosa had the least similarity to the reference genomes. Cluster analysis indicated that L. interrogans serovars Bratislava and Hebdomadis clustered together first, followed by L. interrogans serovar Canicola, before the two L. kirschneri strains. Confirmed/potential virulence factors identified in previous research were also detected in the tested strains.  相似文献   

14.
Seventy-one natural isolates obtained from a Salmonella reference collection were examined for the presence of plasmids closely related to the Escherichia coli F plasmid. The collection consists of several serovars of the S. enterica Typhimurium complex, subspecies I, to which 99% of pathogenic salmonellae belong. Molecular genetic techniques of DNA hybridization, along with PCR and DNA sequencing, were used to examine the occurrence, distribution, and genetic diversity of F-like plasmids among Salmonella strains. The F plasmid genes examined were finO, traD, traY, and repA, which map at dispersed positions on the F plasmid of E. coli. Comparative sequence analysis of each of the four genes in Salmonella plasmids showed them to be homologous (in some cases, virtually identical) to those found in F plasmids of E. coli natural isolates. Furthermore, the frequency of F-like plasmids in Salmonella strains was approximately the same as that observed in the E. coli Reference Collection. However, in Salmonella, the distribution was confined predominately to the serovars Typhimurium and Muenchen. The unexpected finding of a shared pool of F-like plasmids between S. enterica and E. coli demonstrates the significant role of conjugation in the histories of these important bacterial species.  相似文献   

15.
Chlamydia trachomatis is a major cause of ocular and sexually transmitted diseases worldwide. While much of our knowledge about its genetic diversity comes from serotyping or ompA genotyping, no quantitative assessment of genetic diversity within serotypes has been performed. To accomplish this, 507 urogenital samples from a multicenter U.S. study were analyzed by phylogenetic and statistical modeling. No B, Da, or I serotypes were represented. Based on our analyses, all but one previous urogenital B serotype was identified as Ba. This, coupled with the lack of B serotypes in our population, suggests that B has specific tropism for ocular mucosa. We identified a Ba/D recombinant (putative crossover nucleotide 477; P < 0.0001) similar to a B/D mosaic we described previously from an African trachoma patient. Computational analyses of the Ba/D recombinant indicated that upstream changes were less important for tissue tropism than downstream incorporation of the D sequence. Since most serotypes had nonsynonymous/synonymous ratios of <1.0, the major outer membrane protein, encoded by ompA, has many functional constraints and is under purifying selection. Surprisingly, all serotype groups except for J had a unimodal population structure indicating rapid clonal expansion. Of the groups with a unimodal structure, E and Ia and, to a lesser extent, G and K were prevalent, had infrequent incorporation of mutations, and, compared to other groups, had a relatively greater degree of diversifying selection, consistent with a selective sweep of mutations within these groups. Collectively, these data suggest a diverse evolutionary strategy for different serogroups of the organism.  相似文献   

16.
The horizontal transfer and acquisition of virulence genes via mobile genetic elements have been a major driving force in the evolution of Salmonella pathogenicity. Serovars of Salmonella enterica carry variable assortments of phage-encoded virulence genes, suggesting that temperate phages play a pivotal role in this process. Epidemic isolates of S. enterica serovar Typhimurium are consistently lysogenic for two lambdoid phages, Gifsy-1 and Gifsy-2, carrying known virulence genes. Other serovars of S. enterica, including serovars Dublin, Gallinarum, Enteritidis, and Hadar, carry distinct prophages with similarity to the Gifsy phages. In this study, we analyzed Gifsy-related loci from S. enterica serovar Abortusovis, a pathogen associated exclusively with ovine infection. A cryptic prophage, closely related to serovar Typhimurium phage Gifsy-2, was identified. This element, named Gifsy-2AO, was shown to contribute to serovar Abortusovis systemic infection in lambs. Sequence analysis of the prophage b region showed a large deletion which covers genes encoding phage tail fiber proteins and putative virulence factors, including type III secreted effector protein SseI (GtgB, SrfH). This deletion was identified in most of the serovar Abortusovis isolates tested and might be dependent on the replicative transposition of an adjacent insertion sequence, IS1414, previously identified in pathogenic Escherichia coli strains. IS1414 encodes heat-stable toxin EAST1 (astA) and showed multiple genomic copies in isolates of serovar Abortusovis. To our knowledge, this is the first evidence of intergeneric transfer of virulence genes via insertion sequence elements in Salmonella. The acquisition of IS1414 (EAST1) and its frequent transposition within the chromosome might improve the fitness of serovar Abortusovis within its narrow ecological niche.  相似文献   

17.
Genetic maps were constructed for Leptospira interrogans serovars icterohaemorrhagiae and pomona. Previously we independently constructed physical maps of the genomes for these two serovars. The genomes of both serovars consist of a large replicon (4.4 to 4.6 Mb) and a small replicon (350 kb). Genes were localized on the physical maps by using Southern blot analysis with specific probes. Among the probes used were genes encoding a variety of essential enzymes and genes usually found near bacterial chromosomal replication origins. Most of the essential genes are on the larger replicon of each serovar. However, the smaller replicons of both serovars contain the asd gene. The asd gene encodes aspartate beta-semialdehyde dehydrogenase, an enzyme essential in amino acid and cell wall biosyntheses. The finding that both L. interrogans replicons contain essential genes suggests that both replicons are chromosomes. Comparison of the genetic maps of the larger replicons of the two serovars showed evidence of large rearrangements. These data show that there is considerable intraspecies heterogeneity in L. interrogans.  相似文献   

18.
Serotyping, cry gene content, and toxicity to Helicoverpa armigera were determined for 178 isolates of Bacillus thuringiensis native to Spain. A total of 13 different cry1 and cry2 genes were detected when isolates were screened by PCR analysis. Results showed that cry2 and cry1Ia were the most frequent cry genes in the collection (74 and 57%, respectively); whereas cry1D, cry1Aa, cry1Ab, and cry1C were only moderately abundant (49, 48, 47, and 36%, respectively). The most uncommon cry genes were cry1Ac, cry1E, cry1B, cry1Ib, cry1Ad, cry1F, and cry1G, with frequencies of 24, 14, 13, 8, 5, 5, and 1%, respectively. The distribution of some cry genes was somewhat associated with particular serovars. For example, genes cry1C and cry1D were especially frequent in the serovar aizawai, while cry1B was very frequent in the serovar thuringiensis. Bioassays against H. armigera larvae showed a wide variation in the insecticidal potency, even among strains sharing the same set of cry genes and within the same serotype.  相似文献   

19.
Subspecies 1 of Salmonella enterica is responsible for almost all Salmonella infections of warm-blooded animals. Within subspecies 1 there are over 2,300 known serovars that differ in their prevalence and the diseases that they cause in different hosts. Only a few of these serovars are responsible for most Salmonella infections in humans and domestic animals. The gene contents of 79 strains from the most prevalent serovars were profiled by microarray analysis. Strains within the same serovar often differed by the presence and absence of hundreds of genes. Gene contents sometimes differed more within a serovar than between serovars. Groups of strains that share a distinct profile of gene content can be referred to as "genovars" to distinguish them from serovars. Several misassignments within the Salmonella reference B collection were detected by genovar typing and were subsequently confirmed serologically. Just as serology has proved useful for understanding the host range and pathogenic manifestations of Salmonella, genovars are likely to further define previously unrecognized specific features of Salmonella infections.  相似文献   

20.
Current commercial PCRs tests for identifying Salmonella target genes unique to this genus. However, there are two species, six subspecies, and over 2,500 different Salmonella serovars, and not all are equal in their significance to public health. For example, finding S. enterica subspecies IIIa Arizona on a table egg layer farm is insignificant compared to the isolation of S. enterica subspecies I serovar Enteritidis, the leading cause of salmonellosis linked to the consumption of table eggs. Serovars are identified based on antigenic differences in lipopolysaccharide (LPS)(O antigen) and flagellin (H1 and H2 antigens). These antigenic differences are the outward appearance of the diversity of genes and gene alleles associated with this phenotype.We have developed an allelotyping, multiplex PCR that keys on genetic differences between four major S. enterica subspecies I serovars found in poultry and associated with significant human disease in the US. The PCR primer pairs were targeted to key genes or sequences unique to a specific Salmonella serovar and designed to produce an amplicon with size specific for that gene or allele. Salmonella serovar is assigned to an isolate based on the combination of PCR test results for specific LPS and flagellin gene alleles. The multiplex PCRs described in this article are specific for the detection of S. enterica subspecies I serovars Enteritidis, Hadar, Heidelberg, and Typhimurium.Here we demonstrate how to use the multiplex PCRs to identify serovar for a Salmonella isolate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号