首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have made deletions of the HIS4 5' noncoding region in vitro and inserted these deletions into the yeast genome by transformation. Deletions that extend from -588 to -235 have no detectable effects on either promoter or regulatory functions. Deletions that extend to -138 affect promoter function, but are still regulated by the general control of amino acid biosynthesis. A deletion that extends to -136 cannot derepress HIS4 mRNA in response to the general control. This deletion removes all copies of the sequence 5'-TGACTC-3', which appears at positions -194, -182 and -138 in strains without the deletion. The importance of at least one copy of this repeat for regulation of HIS4 is shown by the reappearance of this sequence in revertants of the -136 deletion that have regained the regulatory response. The fact that deletion of this sequence leads to the inability to derepress suggests that HIS4 is under positive control.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Genetic analysis of rearrangements within the multifunctional sex determining gene Sex-lethal has allowed correlation of changes in specific functions with DNA alterations. Rearrangements were isolated by mobilization of a P element which is on the 5' side of the gene, at coordinate 0. Previous work has shown that rearrangements associated with alterations in Sxl gene function are found within an 11-kb region between coordinates-11 and 0. Here it is shown that insertion of foreign DNA, per se, at coordinate 0 is compatible with wild-type gene function. However, deletion of sequences on either side of this point generates a mutant phenotype. Deletions extending distally beyond coordinate -6.5 kb result in a null phenotype, whereas smaller distal deletions or proximal deletions eliminate only some Sxl functions.  相似文献   

10.
11.
We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.  相似文献   

12.
13.
14.
15.
Inverted repeated DNA sequences are common in both prokaryotes and eukaryotes. We found that a plasmid-borne 94 base-pair inverted repeat (a perfect palindrome of 47 bp) containing a poly GT sequence is unstable in S. cerevisiae, with a minimal deletion frequency of about 10(-4)/mitotic division. Ten independent deletions had identical end points. Sequence analysis indicated that all deletions were the result of a DNA polymerase slippage event (or a recombination event) involving a 5-bp repeat (5' CGACG 3') that flanked the inverted repeat. The deletion rate and the types of deletions were unaffected by the rad52 mutation. Strains with the pms1 mutation had a 10-fold elevated frequency of instability of the inverted repeat. The types of sequence alterations observed in the pms1 background, however, were different than those seen in either the wild-type or rad52 genetic backgrounds.  相似文献   

16.
17.
18.
The helix spanning nucleotides 1198 to 1247 (helix 1200-1250) in Escherichia coli 23 S ribosomal RNA (rRNA) is functionally important in protein synthesis, and deletions in this region confer erythromycin resistance. In order to define the structural requirements for resistance, we have dissected this region using in vitro mutagenesis. Erythromycin resistance is established after a minimal deletion of three bases, CAU1231 or AUG1232. The maximum deletion observed to confer resistance is 25 bases. The level of erythromycin resistance conferred by intermediate sized deletions is variable and some deletion mutants show a sensitive phenotype. Deletions that extend into the base-pairing between GCC1208 and GGU1240 result in non-functional 23 S RNAs, which consequently do not confer resistance. A number of phylogenetically conserved nucleotides have been shown to be non-essential for 23 S RNA function. However, removal of either these or non-conserved nucleotides from helix 1200-1250 measurably reduces the efficiency of 23 S RNA in forming functional ribosomes. We have used chemical probing and a modified primer extension method to investigate erythromycin binding to wild-type and resistant ribosomes with a 12-base deletion in 23 S RNA. Erythromycin interacts as strongly with mutant 23 S RNA as with wild-type 23 S RNA. Deletions in the 1200-1250 helix do not therefore confer resistance by reducing erythromycin binding, but by suppressing the effects of the drug at the level of its mechanism of action.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号