首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

2.
The influence of metal ions on the metabolism of ethylenediaminetetraacetate (EDTA) by whole cells and cell-free extracts of strain BNC1 was investigated. Metal-EDTA chelates with thermodynamic stability constants below 1012 were readily mineralized by whole cells with maximum specific turnover rates of 15 (MnEDTA) to 20 (Ca-, Mg-, and BaEDTA) μmol g protein−1 min−1. With the exception of ZnEDTA, chelates with stability constants greater than 1012 were not oxidized at a significant rate. However, it was shown for Fe(III)EDTA that even strong complexes can be degraded after pretreatment by addition of calcium and magnesium salts in the pH range 9–11. The range of EDTA chelates converted by cell-free extracts of strain BNC1 did not depend on their thermodynamic stabilities. The EDTA chelates of Ba2+, Co2+, Mg2+, Mn2+, and Zn2+ were oxidized whereas Ca-, Cd-, Cu-, Fe-, Pb-, and SnEDTA were not. The first catabolic enzyme appears to be an EDTA monooxygenase since it requires O2, NADH, and FMN for its activity and yields glyoxylate and ethylenediaminetriacetate as products. The latter is further degraded via N,N′-ethylenediaminediacetate. The maximum specific turnover rate with MgEDTA, the favoured EDTA species, was 50–130 μmol g protein−1 min−1, and the K m value was 120 μmol/l (K s for whole cells = 8 μmol/l). Whole cells as well as cell-free extracts of strain BNC1 also converted several structural analogues of EDTA. Received: 4 July 1997 / Received revision: 25 September 1997 / Accepted: 29 September 1997  相似文献   

3.
Xanthobacter tagetidis grew as a chemolithotrophic autotroph on thiosulfate and other inorganic sulfur compounds, as a heterotroph on thiophene-2-carboxylic acid, acetic acid and α-ketoglutaric acid, and as a mixotroph on thiosulfate in combination with thiophene-2-carboxylic acid and/or acetic acid. Autotrophic growth on one-carbon organosulfur compounds, and intermediates in their oxidation are also reported. Thiosulfate enhanced the growth yields in mixotrophic cultures, presumably by acting as a supplementary energy source, since ribulose bisphosphate carboxylase was only active in thiosulfate-grown cells and was not detected in mixotrophic cultures using thiosulfate with thiophene-2-carboxylic acid. Bacteria grown on thiophene-2-carboxylic acid also oxidized sulfide, thiosulfate and tetrathionate, indicating these as possible sulfur intermediates in thiophene-2-carboxylic acid degradation. Thiosulfate and tetrathionate were oxidized completely to sulfate and, consequently, did not accumulate as products of thiophene-2-carboxylic acid oxidation in growing cultures. K m and V max values for the oxidation of thiosulfate, tetrathionate or sulfide were 13 μM and 83 nmol O2 min–1 (mg dry wt.)–1, respectively; thiosulfate and tetrathionate became autoinhibitory at concentrations above 100 μM. The true growth yield (Ymax) on thiophene-2-carboxylic acid was estimated from chemostat cultures (at dilution rates of 0.034–0.094 h–1) to be 112.2 g mol–1, with a maintenance coefficient (m) of 0.3 mmol thiophene-2-carboxylic acid (g dry wt.)–1 h–1, and the maximum specific growth rate (μmax) was 0.116 h–1. Growth in chemostat culture at a dilution rate of 0.041 h–1 indicated growth yields [g dry wt. (mol substrate)–1] of 8.1 g (mol thiosulfate)–1, 60.9 g (mol thiophene-2-carboxylic acid)–1, and 17.5 g (mol acetic acid)–1, with additive yields for growth on mixtures of these substrates. At a dilution rate of 0.034 h–1, yields of 57.8 g (mol α-ketoglutaric acid)–1 and 60.7 g (mol thiophene-2-carboxylic acid)–1 indicated some additional energy conservation from oxidation of the thiophene-sulfur. SDS-PAGE of cell-free preparations indicated a polypeptide (M r, 21.0 kDa) specific to growth on thiophene-2-carboxylic acid for which no function can yet be ascribed: no metabolism of thiophene-2-carboxylic acid by cell-free extracts was detected. It was shown that X. tagetidis exhibits a remarkable degree of metabolic versatility and is representative of facultatively methylotrophic and chemolithotrophic autotrophs that contribute significantly to the turnover of simple inorganic and organic sulfur compounds (including substituted thiophenes) in the natural environment. Received: 1 July 1997 / Accepted: 3 November 1997  相似文献   

4.
Hydrogenase was solubilized from the cytoplasmic membrane fraction of betaine-grown Sporomusa sphaeroides, and the enzyme was purified under oxic conditions. The oxygen-sensitive enzyme was partially reactivated under reducing conditions, resulting in a maximal activity of 19.8 μmol H2 oxidized min–1 (mg protein)–1 with benzyl viologen as electron acceptor and an apparent K m value for H2 of 341 μM. The molecular mass of the native protein estimated by native PAGE and gel filtration was 122 and 130 kDa, respectively. SDS-PAGE revealed two polypeptides with molecular masses of 65 and 37 kDa, present in a 1:1 ratio. The native protein contained 15.6 ± 1.7 mol Fe, 11.4 ± 1.4 mol S2–, and 0.6 mol Ni per mol enzyme. The hydrogenase coupled with viologen dyes, but not with other various artificial electron carriers, FAD, FMN, or NAD(P)+. The amino acid sequence of the N-termini of the subunits showed a high degree of similarity to eubacterial membrane-bound uptake hydrogenases. Washed membranes catalyzed a H2-dependent cytochrome b reduction at a rate of 0.18 nmol min–1 (mg protein)–1. Received: 7 September 1995 / Accepted: 4 December 1995  相似文献   

5.
A pure culture of the obligately lithoautotrophic ammonia-oxidizer Nitrosomonas eutropha was grown in a laboratory-scale bioreactor with complete biomass retention. The air supply was supplemented with nitrogen dioxide (NO2; 25 or 50 ppm) or nitric oxide (NO; 25 or 50 ppm). Compared to cultures grown without these nitrogenous oxides, the addition of NO2 or NO to the culture resulted in a significant increase of the nitrification rate, specific activity of ammonia oxidation, growth rate, and maximum cell densities. In contrast, the growth yield slightly decreased in the presence of NO or NO2. Maximum cell densities of about 2 × 1010 cells ml–1 and a maximum nitrification rate of about 221 mmol NH4 + l–1 day–1 were obtained after 3 weeks in the presence of 50 ppm NO2. Furthermore, in the stationary phase about 50% of the nitrite produced was aerobically denitrified to dinitrogen (N2) and traces of nitrous oxide (N2O). When cells were supplemented with NO, a high rate of aerobic denitrification occurred only during the first days of the exponential growth phase. Received: 12 May 1997 / Accepted: 10 November 1997  相似文献   

6.
Metabolism of ammonia (NH3) and hydroxylamine (NH2OH) by wild-type and a nitrite reductase (nirK) deficient mutant of Nitrosomonas europaea was investigated to clarify the role of NirK in the NH3 oxidation pathway. NirK-deficient N. europaea grew more slowly, consumed less NH3, had a lower rate of nitrite (NO2 ) production, and a significantly higher rate of nitrous oxide (N2O) production than the wild-type when incubated with NH3 under high O2 tension. In incubations with NH3 under low O2 tension, NirK-deficient N. europaea grew more slowly, but had only modest differences in NH3 oxidation and product formation rates relative to the wild-type. In contrast, the nirK mutant oxidized NH2OH to NO2 at consistently slower rates than the wild-type, especially under low O2 tension, and lost a significant pool of NH2OH–N to products other than NO2 and N2O. The rate of N2O production by the nirK mutant was ca. three times higher than the wild-type during hydrazine-dependent NO2 reduction under both high and low O2 tension. Together, the results indicate that NirK activity supports growth of N. europaea by supporting the oxidation of NH3 to NO2 via NH2OH, and stimulation of hydrazine-dependent NO2 reduction by NirK-deficient N. europaea indicated the presence of an alternative, enzymatic pathway for N2O production.  相似文献   

7.
Reservoirs are intrinsically linked to the rivers that feed them, creating a river–reservoir continuum in which water and sediment inputs are a function of the surrounding watershed land use. We examined the spatial and temporal variability of sediment denitrification rates by sampling longitudinally along an agriculturally influenced river–reservoir continuum monthly for 13 months. Sediment denitrification rates ranged from 0 to 63 μg N2O g ash free dry mass of sediments (AFDM)−1 h−1 or 0–2.7 μg N2O g dry mass of sediments (DM)−1 h−1 at reservoir sites, vs. 0–12 μg N2O gAFDM−1 h−1 or 0–0.27 μg N2O gDM−1 h−1 at riverine sites. Temporally, highest denitrification activity traveled through the reservoir from upper reservoir sites to the dam, following the load of high nitrate (NO3-N) water associated with spring runoff. Annual mean sediment denitrification rates at different reservoir sites were consistently higher than at riverine sites, yet significant relationships among theses sites differed when denitrification rates were expressed per gDM vs. per gAFDM. There was a significant positive relationship between sediment denitrification rates and NO3-N concentration up to a threshold of 0.88 mg NO3 -N l−1, above which it appeared NO3-N was no longer limiting. Denitrification assays were amended seasonally with NO3-N and an organic carbon source (glucose) to determine nutrient limitation of sediment denitrification. While organic carbon never limited sediment denitrification, all sites were significantly limited by NO3-N during fall and winter when ambient NO 3-N was low.  相似文献   

8.
In a combined field and laboratory study in the southwest of Burkina Faso, we quantified soil-atmosphere N2O and NO exchange. N2O emissions were measured during two field campaigns throughout the growing seasons 2005 and 2006 at five different experimental sites, that is, a natural savanna site and four agricultural sites planted with sorghum (n = 2), cotton and peanut. The agricultural fields were not irrigated and not fertilized. Although N2O exchange mostly fluctuated between −2 and 8 μg N2O–N m−2 h−1, peak N2O emissions of 10–35 μg N2O–N m−2 h−1 during the second half of June 2005, and up to 150 μg N2O–N m−2 h−1 at the onset of the rainy season 2006, were observed at the native savanna site, whereas the effect of the first rain event on N2O emissions at the crop sites was low or even not detectable. Additionally, a fertilizer experiment was conducted at a sorghum field that was divided into three plots receiving different amounts of N fertilizer (plot A: 140 kg N ha−1; plot B: 52.5 kg N ha−1; plot C: control). During the first 3 weeks after fertilization, only a minor increase in N2O emissions at the two fertilized plots was detected. After 24 days, however, N2O emission rates increased exponentially at plot A up to a mean of 80 μg N2O–N m−2 h−1, whereas daily mean values at plot B reached only 19 μg N2O–N m−2 h−1, whereas N2O flux rates at plot C remained unchanged. The calculated annual N2O emission of the nature reserve site amounted to 0.52 kg N2O–N ha−1 a−1 in 2005 and to 0.67 kg N2O–N ha−1 a−1 in 2006, whereas the calculated average annual N2O release of the crop sites was only 0.19 kg N2O–N ha−1 a−1 and 0.20 kg N2O–N ha−1 a−1 in 2005 and 2006, respectively. In a laboratory study, potential N2O and NO formation under different soil moisture regimes were determined. Single wetting of dry soil to medium soil water content with subsequent drying caused the highest increase in N2O and NO emissions with maximum fluxes occurring 1 day after wetting. The stimulating effect lasted for 3–4 days. A weaker stimulation of N2O and NO fluxes was detected during daily wetting of soil to medium water content, whereas no significant stimulating effect of single or daily wetting to high soil water content (>67% WHCmax) was observed. This study demonstrates that the impact of land-use change in West African savanna on N trace gas emissions is smaller—with the caveat that there could have been potentially higher N2O and NO emissions during the initial conversion—than the effect of timing and distribution of rainfall and of the likely increase in nitrogen fertilization in the future.  相似文献   

9.
Dinitrogen (15N2) fixation of four free-livingRhizobium strains ranged from 0.8 to 2.3 μmol/mg biomass N. Parallel-grown cultures liberated 4–8 μmol hydrogen and reduced 12–23 μmol acetylene, giving a mean ratio of reduced acetylene-to-fixed15N2 of 12. This ratio contrasts with lower values others have observed for asymbiotic diazotrophs.  相似文献   

10.
The soil emission rates (fluxes) of nitrous oxide (N2O) and nitrogen oxides (NO + NO2 = NO x ) through a seasonal snowpack were determined by a flux gradient method from near-continuous 2-year measurements using an automated system for sampling interstitial air at various heights within the snowpack from a subalpine site at Niwot Ridge, Colorado. The winter seasonal-averaged N2O fluxes of 0.047–0.069 nmol m−2 s−1 were ~15 times higher than observed NO x fluxes of 0.0030–0.0067 nmol m−2 s−1. During spring N2O emissions first peaked and then dropped sharply as the soil water content increased from the release of snowpack meltwater, while other gases, including NO x and CO2 did not show this behavior. To compare and contrast the winter fluxes with snow-free conditions, N2O fluxes were also measured at the same site in the summers of 2006 and 2007 using a closed soil chamber method. Summer N2O fluxes followed a decreasing trend during the dry-out period after snowmelt, interrupted by higher values related to precipitation events. These peaks were up to 2–3 times higher than the background summer levels. The integrated N2O-N loss over the summer period was calculated to be 1.1–2.4 kg N ha−1, compared to ~0.24–0.34 kg N ha−1 for the winter season. These wintertime N2O fluxes from subniveal soil are generally higher than the few previously published data. These results are of the same order of magnitude as data from more productive ecosystems such as fertilized grasslands and high-N-cycling forests, most likely because of a combination of the relatively well-developed soils and the fact that subnivean biogeochemical processes are promoted by the deep, insulating snowpack. Hence, microbially mediated oxidized nitrogen emissions occurring during the winter can be a significant part of the N-cycle in seasonally snow-covered subalpine ecosystems.  相似文献   

11.
Emissions of N2O and CO2 were measured following combined applications of 15N-labelled fertiliser (100 μg N g−1; 10 atom % excess 15N) and organic olive crop weed residues (Avena sativa, Ononis viscosa, Ridolfia segetum and Olea europea; 100 μg N g−1) to a silt loam soil under controlled environment conditions. The objective was to determine the effect of varying combinations of inorganic fertiliser and plant residues on these emissions and soil mineral N dynamics. Emissions were generally increased following application of residues alone, with 23 ng N2O–N g−1 soil (2 ng N2O–N g−1 soil mg−1 biomass) and 389 μg CO2–C g−1 soil (39 μg CO2–C g−1 soil mg−1 biomass) emitted over 28 days after addition of the Ridolfia residues in the absence of fertiliser-N. N2O emissions from these residue-only treatments were strongly negatively correlated with residue lignin content (r = −0.91; P < 0.05), total carbon content (r = −0.90; P < 0.05) and (lignin + polyphenol)-to-N ratio (r = −0.70; P < 0.1). However, changes in the net input of these compounds through application of 25:75, 50:50 and 75:25 proportional mixtures of Avena and Ononis residues had no effect on emissions compared to their single (0:100 or 100:0) applications. Addition of fertiliser-N increased emissions (by up to 30 ng N2O–N g−1 28 days−1; 123%), particularly from the low residue-N treatments (Avena and Ridolfia) where a greater quantity of biomass was applied, resulting in emissions above that of the sum from the unfertilised residue and fertilised control treatments. In contrast, fertiliser application had no impact on emissions from the Olea treatment with the highest polyphenol (2%) and lignin (11%) contents due to strong immobilisation of soil N, and the 15N–N2O data indicated that residue quality had no effect on the denitrification of applied fertiliser-N. Such apparent inconsistencies mean that before the potential for manipulating N input (organic + inorganic) to lower gaseous N losses can be realised, first the nature and extent of interactions between the different N sources and any interactions with other compounds released from the residues need to be better understood.  相似文献   

12.
Photosynthetic Response of Carrots to Varying Irradiances   总被引:7,自引:3,他引:4  
Kyei-Boahen  S.  Lada  R.  Astatkie  T.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(2):301-305
Response to irradiance of leaf net photosynthetic rates (P N) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m−2 s−1 at 20 °C and 350 μmol (CO2) mol−1(air). The values of P N were fitted to a rectangular hyperbolic nonlinear regression model. P N for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher P N than CC. None of the cultivars reached saturation at 1 000 μmol m−2 s−1. The predicted P N at saturation (P Nmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m−2 s−1, respectively. The compensation irradiance (I c) occurred at 54 μmol m−2 s−1 for Cascade, 36 μmol m−2 s−1 for CC, 45 μmol m−2 s−1 for Oranza, and 25 μmol m−2 s−1 for RCC. The quantum yield among the cultivars ranged between 0.057–0.033 mol(CO2) mol−1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m−2 s−1 for Cascade to 0.85 μmol m−2 s−1 for RCC. As P N increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m−2 s−1 followed by a steep decline resulting in sharp increases in water use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
A new bacterial strain isolated from soil consumed nitric oxide (NO) under oxic conditions by oxidation to nitrate. Phenotypic and phylogenetic characterization of the new strain PS88 showed that it represents a previously unknown species of the genus Pseudomonas, closely related to Pseudomonas fluorescens and Pseudomonas putida. The heterotrophic, obligately aerobic strain PS88 was not able to denitrify or nitrify; however, strain PS88 oxidized NO to nitrate. NO was not reduced to nitrous oxide (N2O). Nitrogen dioxide (NO2) and nitrite (NO2 ) as possible intermediates of NO oxidation to nitrate (NO3 ) could not be detected. NO oxidation was inhibited under anoxic conditions and by high osmolarity, but not by nitrite. NO oxidation activity was inhibited by addition of formaldehyde, HgCl2, and antimycin, and by autoclaving or disintegrating the cells, indicating that the process was enzyme-mediated. However, the mechanism remains unclear. A stepwise oxidation at a metalloenzyme and a radical mechanism are discussed. NO oxidation in strain PS88 seems to be a detoxification or a co-oxidation mechanism, rather than an energy-yielding process. Received: 15 November 1995 / Accepted: 24 February 1996  相似文献   

14.
Wetlands are often highly effective nitrogen (N) sinks. In the Lake Waco Wetland (LWW), near Waco, Texas, USA, nitrate (NO3) concentrations are reduced by more than 90% in the first 500 m downstream of the inflow, creating a distinct gradient in NO3 concentration along the flow path of water. The relative importance of sediment denitrification (DNF), dissimilatory NO3 reduction to ammonium (DNRA), and N2 fixation were examined along the NO3 concentration gradient in the LWW. “Potential DNF” (hereafter potDNF) was observed in all months and ranged from 54 to 278 μmol N m−2 h−1. “Potential DNRA” (hereafter potDNRA) was observed only in summer months and ranged from 1.3 to 33 μmol N m−2 h−1. Net N2 flux ranged from 184 (net denitrification) to −270 (net N2 fixation) μmol N m−2 h−1. Nitrogen fixation was variable, ranging from 0 to 426 μmol N m−2 h−1, but high rates ranked among the highest reported for aquatic sediments. On average, summer potDNRA comprised only 5% (±2% SE) of total NO3 loss through dissimilatory pathways, but was as high as 36% at one site where potDNF was consistently low. Potential DNRA was higher in sediments with higher sediment oxygen demand (r 2 = 0.84), and was related to NO3 concentration in overlying water in one summer (r 2 = 0.81). Sediments were a NO3 sink and accounted for 50% of wetland NO3 removal (r 2 = 0.90). Sediments were an NH4+ source, but the wetland was often a net NH4+ sink. Although DNRA rates in freshwater wetlands may rival those observed in estuarine systems, the importance of DNRA in freshwater sediments appears to be minor relative to DNF. Furthermore, sediment N2 fixation can be extremely high when NO3 in overlying water is consistently low. The data suggest that newly fixed N can support sustained N transformation processes such as DNF and DNRA when surface water inorganic N supply rates are low.  相似文献   

15.
Elevated values of molar growth yield (Yx/s = 14–26 g mol–1) were obtained during exponential growth (μ > 0.4 h–1) of Zymomonas mobilis ATCC 29191 by using reduced concentrations of glucose (6.25–100 mM) and increased oxygen supply (E h > 300 mV) in the growth medium, as compared to the Yx/s of anaerobic exponential growth (8–10 g mol–1). Aerobically grown cells showed an increased maximum growth rate (μmax), and a reduced specific glucose consumption rate (qs), and specific ethanol formation rate (qp), thus demonstrating a more pronounced energy-coupling growth under oxic conditions. These results can be neither explained by the concept of a solely operating Entner-Doudoroff pathway as an ATP source in aerobically growing cultures of Z. mobilis nor considered to be consistent with existing data on the lack of the Pasteur effect in this bacterium. Therefore, the results rather give evidence for the essential contribution of aerobic ATP generation under the reported conditions. Received: 24 September 1996 / Accepted: 9 December 1996  相似文献   

16.
The effect of glucose addition (0 and 500 μg C g−1 soil) and nitrate (NO3) addition (0, 10, 50 and 500 μg NO3–N g−1 soil) on nitric oxide reductase (cnorB) gene abundance and mRNA levels, and cumulative denitrification were quantified over 48 h in anoxic soils inoculated with Pseudomonas mandelii. Addition of glucose-C significantly increased cnorB p (P. mandelii and related species) mRNA levels and abundance compared with soil with no glucose added, averaged over time and NO3 addition treatments. Without glucose addition, cnorB p mRNA levels were higher when 500 μg NO3–N g−1 soil was added compared with other NO3 additions. In treatments with glucose added, addition of 50 μg NO3–N g−1 soil resulted in higher cnorB p mRNA levels than soil without NO3 but was not different from the 10 and 500 μg NO3–N g−1 treatments. cnorB p abundance in soils without glucose addition was significantly higher in soils with 500 μg NO3–N g−1 soil compared to lower N-treated soils. Conversely, addition of 500 μg NO3–N g−1 soil resulted in lower cnorB p abundance compared with soil without N-addition. Over 48 h, cumulative denitrification in soils with 500 μg glucose-C g−1 soil, and 50 or 500 μg NO3–N g−1 was higher than all other treatments. There was a positive correlation between cnorB p abundance and cumulative denitrification, but only in soils without glucose addition. Glucose-treated soils generally had higher cnorB p abundance and mRNA levels than soils without glucose added, however response of cnorB p abundance and mRNA levels to NO3 supply depended on carbon availability.  相似文献   

17.
In order to assess the long-term impacts of saline groundwater irrigation to Haloxylon ammodendron, one of the main shrubs in the Tarim desert highway ecological shelterbelt, we irrigated the H. ammodendron seedlings with progressive saline groundwater (3–30 g L−1, simulation environment in the Tarim desert highway ecological shelterbelt) and investigated the diurnal variations of chlorophyll a (Chl a) fluorescence parameters, such as maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), quantum yield of photochemical energy conversion in PSII (YII), the apparent rate of electron transport at the PSII level (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), quantum yield of nonregulated non-photochemical energy loss in PSII (YNO) and quantum yield of regulated non-photochemical energy loss in PSII (YII), at approximately 2-h intervals. Fv/Fm with 5 g L−1 (S2) was lower than that with 2 g L−1 (S1) but a little higher than 20 g L−1 (S5), respectively. Under the low light [photosyntheticallyactive radiation (PAR) ≤ 250 μmol m−2 s−1, at 08:00, 10:00 and 20:00 h of the local time], S1 kept the lowest YII and the highest YNPQ; while under the high light (PAR ≥ 1500 μmol m−2 s−1), the YII performed S1>S2>S5, and the reverse YNPQ; under mild light (250 μmol mt-2 s−1 ≤ PAR ≤ 1500 μmol m−2 s−1), S1 remained the highest YII, no matter the light and the salinity, the similar YNO almost occurred basically. The results showed that the sand-binding plant H. ammodendron could regulate its energy-utilizing strategies. The S2 might be the most suitable salinity of the irrigation water for H. ammodendron in the Tarim desert highway ecological shelterbelt in the northwest of China.  相似文献   

18.
Fluxes of N2O at the soil surface, dissolved N2O in near-surface groundwater, and potential N2O production rates were measured across riparian catenas in two rain forest watersheds in Puerto Rico. In the Icacos watershed, mean N2O fluxes were highest at topographic breaks in the landscape (≃ 40–300 μg N2O-N m−2 h−1). At other locations in the riparian zone and hillslope, fluxes were lower (⩽ 2 μg N2O-N m−2 h−1). This pattern of surface N2O fluxes was persistent. In the Bisley watershed, mean suface N2O fluxes were lower (<40 μg N2O-N m−2 h−1) and no identifiable spatial or temporal pattern. Although the spatial patterns and intensities of N2O emissions differed between the two watersheds, surface soils from both sites had a high potential to reduce NO3 to N2O (and perhaps N2). This potential declined sharply with depth as did soil %C, %N, and potential N-mineralization. Simple controls on denitrification (i.e. aeration, nitrate, and carbon) explained characteristics of potential N2O production in surface and deep soils from riparian and upslope locations. In the field, spatial patterns in these controlling variables were defined by geomorphological differences between the two watersheds, which then explained the spatial patterns of observed N2O flux  相似文献   

19.
The initial rates of ATP synthesis catalyzed by tightly coupled Paracoccus denitrificans plasma membrane were measured. The reaction rate was hyperbolically dependent on the substrates, ADP and inorganic phosphate (Pi). Apparent K m values for ADP and Pi were 7–11 and 60–120 μM, respectively, at saturating concentration of the second substrate (pH 8.0, saturating Mg2+). These values were dependent on coupling efficiency. The substrate binding in the ATP synthesis reaction proceeds randomly: K m value for a given substrate was independent of the concentration of the other one. A decrease of electrochemical proton gradient by the addition of malonate (when succinate served as the respiratory substrate) or by a decrease of steady-state level of NADH (when NADH served as the respiratory substrate) resulted in a proportional decrease of the maximal rates and apparent K m values for ADP and Pi (double substitution, ping-pong mechanism). The kinetic scheme for ATP synthesis was compared with that described previously for the proton-translocating ATP hydrolysis catalyzed by the same enzyme preparation (T. V. Zharova and A. D. Vinogradov (2006) Biochemistry, 45, 14552–14558).  相似文献   

20.
Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria   总被引:4,自引:0,他引:4  
Mitochondria isolated from the roots of barley (Hordeum vulgare L.) and rice (Oryza sativa L.) seedlings were capable of oxidizing external NADH and NADPH anaerobically in the presence of nitrite. The reaction was linked to ATP synthesis and nitric oxide (NO) was a measurable product. The rates of NADH and NADPH oxidation were in the range of 12–16 nmol min−1 mg−1 protein for both species. The anaerobic ATP synthesis rate was 7–9 nmol min−1 mg−1 protein for barley and 15–17 nmol min−1 mg−1 protein for rice. The rates are of the same order of magnitude as glycolytic ATP production during anoxia and about 3–5% of the aerobic mitochondrial ATP synthesis rate. NADH/NADPH oxidation and ATP synthesis were sensitive to the mitochondrial inhibitors myxothiazol, oligomycin, diphenyleneiodonium and insensitive to rotenone and antimycin A. The uncoupler FCCP completely eliminated ATP production. Succinate was also capable of driving ATP synthesis. We conclude that plant mitochondria, under anaerobic conditions, have a capacity to use nitrite as an electron acceptor to oxidize cytosolic NADH/NADPH and generate ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号