首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriocin ST23LD levels of 2930AU/OD were recorded in MRS broth (pH of 6.5) and in the presence of tryptone and yeast extract as sole nitrogen sources. Growth in MRS broth at an initial pH of 6.0 yielded only 1460AU/OD bacteriocin ST23LD. Activities of 5861AU/OD were recorded with maltose (20, 30 and 40 g/l) as sole carbon source and 9036AU/OD with the addition of 2.0-10.0 g/l KH2PO4. Bacteriocin ST341LD levels of 2850 and 2841AU/OD were recorded in MRS broth at an initial pH of 6.0 or 5.5, respectively. Only 709AU/OD was recorded in the same medium with an initial pH of 6.5. Bacteriocin ST341LD production was stimulated by the presence of tryptone. However, glucose at 10 and 40 g/l, or the presence of 5.0 or 10.0 g/l K2HPO4, resulted in a 50% reduction of bacteriocin activity. Glycerol in the growth medium repressed bacteriocin production. No increased bacteriocin production was recorded in medium supplemented with vitamins.  相似文献   

2.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (10(5) to 10(6) CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 10(4) CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

3.
4.
Enterococcus mundtii ST4SA produces a broad-spectrum bacteriocin (bacST4SA), active against Gram-positive and Gramnegative bacteria. Growth in corn steep liquor (CSL) with a sugar content of 5.0 and 10.0 g/l yielded bacST4SA levels of 12800 AU/ml. A four-fold increase in bacST4SA production (51200 AU/ml) was recorded in CSL with a sugar content of 7.5 g/l supplemented with 6.5 g/l yeast extract (CSL-YE). Poor growth and low levels of bacST4SA production were observed when cells were grown in CSL-YE controlled at pH 5.5. Fermentation at pH 7.5 yielded 25600 AU/ml after 6 h, but the activity levels decreased to approximately 1000 AU/ml during the next 6 h. Adjustment of the culture pH from 6.5 to 5.5 after 6 h of fermentation extended bacST4SA activity (51200 AU/ml) over 8 h. Activity then decreased to 25600 AU/ml and was maintained this level for 10 h. Optimal levels of bacST4SA production (102400 AU/ml) were obtained after 6 h of fermentation in CSL-YE supplemented with 7.5 g/l glucose at the start of the fermentation. This level of production was maintained by changing the culture pH from 6.5 after 6 h of fermentation to pH 5.5. This study proved that bacST4SA could be produced at high levels in an inexpensive industrial medium byE. mundtii ST4SA.  相似文献   

5.
 The influence of several parameters on the fermentative production of nisin Z by Lactococcus lactis IO-1 was studied. Considerable attention has been focused on the relationship between the primary metabolite production of bacteriocin and lactate and cell growth, which has so far not been clarified in detail. Production of nisin Z was optimal at 30°C and in the pH range 5.0–5.5. The addition of Ca2+ to the medium showed a stimulating effect on the production of nisin Z. A maximum activity of 3150 IU/ml was obtained during pH-controlled batch fermentation in the medium supplemented with 0.1 M CaCl2. It was about three times higher than that obtained under the optimal conditions for cell growth and lactic acid production. Received: 12 July 1995/Received revision: 11 September 1995/Accepted: 4 October 1995  相似文献   

6.
The influence of pH on growth, and lactic acid and bacteriocin production byLactococcus lactis subsp.lactis 140 NWC was studied during batch fermentation in a lactose-based complex medium. Growth and lactic acid production were modelled using a simple logistic equation while substrate consumption was found to be a function growth and lactic acid production rate. The optimal pH for growth and lactic acid production was between 6.0 and 6.5. Bacteriocin production showed primary metabolite kinetics. pH had a dramatic effect on the production of the bacteriocin, lactococcin 140. A maximum activity of 15.4 × 106 AU (arbitrary units) 1–1 was obtained after 7 h at pH 5.5. Maximum bacteriocin activity was achieved before the end of growth and was followed by a decrease in activity, which was due to adsorption to the cells of the producing organism, possibly followed by degradation by specific proteases. Both bacteriocin production and degradation rates were higher at pH 5.0 and 5.5, resulting in sharper activity peaks than at pH 6.0 or 6.5. On the basis of the experimental results a qualitative model for bacteriocin production is proposed.  相似文献   

7.
提出了在恒定不同pH的发酵条件下,乳酸链球菌SM526的菌体生长、底物消耗、乳酸及Nisin产生的动力学模型。菌体生长、乳酸及Nisin产生用逻辑方程描述,而底物消耗是菌体生长和乳酸产生速率的函数。模型表明,乳酸链球菌SM526菌体生长和乳酸产生的最佳pH为7.0,而Nisin产生的最佳pH却为6.5。  相似文献   

8.
This study investigated both the activity of nisin Z, either encapsulated in liposomes or produced in situ by a mixed starter, against Listeria innocua, Lactococcus spp., and Lactobacillus casei subsp. casei and the distribution of nisin Z in a Cheddar cheese matrix. Nisin Z molecules were visualized using gold-labeled anti-nisin Z monoclonal antibodies and transmission electron microscopy (immune-TEM). Experimental Cheddar cheeses were made using a nisinogenic mixed starter culture, containing Lactococcus lactis subsp. lactis biovar diacetylactis UL 719 as the nisin producer and two nisin-tolerant lactococcal strains and L. casei subsp. casei as secondary flora, and ripened at 7 degrees C for 6 months. In some trials, L. innocua was added to cheese milk at 10(5) to 10(6) CFU/ml. In 6-month-old cheeses, 90% of the initial activity of encapsulated nisin (280 +/- 14 IU/g) was recovered, in contrast to only 12% for initial nisin activity produced in situ by the nisinogenic starter (300 +/- 15 IU/g). During ripening, immune-TEM observations showed that encapsulated nisin was located mainly at the fat/casein interface and/or embedded in whey pockets while nisin produced by biovar diacetylactis UL 719 was uniformly distributed in the fresh cheese matrix but concentrated in the fat area as the cheeses aged. Cell membrane in lactococci appeared to be the main nisin target, while in L. casei subsp. casei and L. innocua, nisin was more commonly observed in the cytoplasm. Cell wall disruption and digestion and lysis vesicle formation were common observations among strains exposed to nisin. Immune-TEM observations suggest several modes of action for nisin Z, which may be genus and/or species specific and may include intracellular target-specific activity. It was concluded that nisin-containing liposomes can provide a powerful tool to improve nisin stability and availability in the cheese matrix.  相似文献   

9.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

10.
Four lactobacilli strains (Lactobacillus bulgaricus, Lactobacillus acidophilus, Lactobacilus casei and Lactobacillus reuteri) were grown in MRS broth and three lactococci strains (Streptococcus thermophilus, Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. lactis biovar. diacetilactis) were grown in M17 broth. L. reuteri and S. thermophilus were chosen on the basis of the best mean beta-galactosidase activity of 10.44 and 10.01 U/ml respectively, for further studies on permeate-based medium. The maximum production of beta-galactosidase by L. reuteri was achieved at lactose concentration of 6%, initial pH 5.0-7.5, ammonium phosphate as nitrogen source at a concentration of 0.66 g N/L and incubation temperature at 30 degrees C/24 hrs to give 6.31 U/ml. While in case of S. thermophilus, maximum beta-galactosidase production was achieved at 10% lactose concentration of permeate medium, supplemented with phosphate buffer ratio of 0.5:0.5 (KH2PO4:K2HPO4, g/L), at initial pH 6.0-6.5, ammonium phosphate (0.66g N/L) as nitrogen source and incubation temperature 35 degrees C for 24 hrs to give 7.85 U/ml.  相似文献   

11.
Regulation of glucose isomerase synthesis was studied in Thermoanaerobacter strain B6A, which fermented a wide variety of carbohydrates including glucose, xylose, lactose, starch, and xylan. Glucogenic amylase activities and β-galactosidase were produced constitutively, whereas the synthesis of glucose isomerase was induced by either xylose or xylan. Production of these saccharidase activities was not significantly repressed by the presence of glucose or 2-deoxyglucose in the growth media. Glucose isomerase production was optimized by controlling the culture pH at 5.5 during xylose fermentation. The apparent temperature and pH optima for these cell-bound saccharidase activities were as follows: glucose isomerase, 80°C, pH 7.0 to 7.5; glucogenic amylase, 70°C, pH 5.0 to 5.5; and β-galactosidase, 60°C, pH 6.0 to 6.5 Glucose isomerase, glucogenic amylase, and β-galactosidase were produced in xylose-grown cells that were active and stable at 60 to 70°C and pH 6.0 to 6.5. Under single-step process conditions, these saccharidase activities in whole cells or cell extracts converted starch or lactose directly into fructose mixtures. A total of 96% of initial liquefied starch was converted into a 49:51 mixture of glucose and fructose, whereas 85% of initial lactose was converted into a 40:31:29 mixture of galactose, glucose, and fructose.  相似文献   

12.
Summary Bacteriocin ST33LD, produced by Leuconostoc mesenteroides subsp. mesenteroides, is approximately 2.7 kDa in size and inhibits Enterococcus faecalis, Escherichia coli, Lactobacillus casei and Pseudomonas aeruginosa. Good growth was recorded in the presence of 10% (w/v) soy milk or 10% (w/v) molasses, but there was no bacteriocin production. Growth in MRS broth adjusted to pH 4.5 yielded low bacteriocin levels (800 AU/ml). However, the same medium adjusted to pH 5.0, 5.5 and 6.5, respectively, yielded 3200 AU/ml. Tween 80 decreased bacteriocin production by more than 50%. Growth in the presence of tryptone yielded maximal activity (12,800 AU/ml), whereas different combinations of tryptone, meat extract and yeast extract produced activity levels of 1600 AU/ml and less. Growth in the presence of 2.0% (w/v) sucrose, or maltose, yielded much higher levels of bacteriocin activity (12,800 AU/ml) compared to growth in the presence of 2.0% (w/v) glucose or lactose (6400 AU/ml). Lower yields were also recorded in the presence of fructose and mannose. KH2PO4 at 10.0% (w/v) stimulated bacteriocin production. Glycerol concentrations of 0.5% (w/v) and higher (up to 5.0%, w/v) repressed bacteriocin production by 50%. The addition of cyanocobalamin, thiamine and L-ascorbic acid to MRS broth (1.0 ppm) yielded 12,800 AU/ml bacteriocin, whereas the addition of DL-6,8-thioctic acid yielded only 6 400 AU/ml.  相似文献   

13.
The influence of growth parameters on the fermentative production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi was studied. The bacteriocin production was greatly affected by carbon and nitrogen sources. Strain A164 produced at least 4-fold greater bacteriocin in M17 broth supplemented with lactose than other carbon sources. The amount of 3% yeast extract was found to be the optimal organic nitrogen source. While the maximum biomass was obtained at 37 degrees C, the optimal temperature for the bacteriocin production was 30 degrees C. The bacteriocin production was also affected by pH of the culture broth. The optimal pH for growth and bacteriocin production was 6.0. Although the cell growth at pH 6.0 was nearly the same level at pH 5.5 and 6.5, the greater bacteriocin activity was observed at pH 6.0. Exponential growth took place only during an initial period of the cultivation, and then linear growth was observed. Linear growth rates increased from 0.160 g(DCW) x l(-1) x h(-1) to 0.245 g(DCW) x l(-1) x h(-1) with increases in lactose concentrations from 0.5 to 3.0%. Maximum biomass was also increased from 1.88 g(DCW) x l(-1) to 4.29 g(DCW) x l(-1). However, increase in lactose concentration did not prolong the active growth phase. After 20 h cultivation, cell growth stopped regardless of lactose concentration. Production of the bacteriocin showed primary metabolic kinetics. However, bacteriocin yield based on cell mass increased greatly during the late growth phase. A maximum activity of 131x10(3) AU x ml(-1) was obtained at early stationary growth phase (20 h) during the batch fermentation in M17L broth (3.0% lactose) at 30 degrees C and pH 6.0.  相似文献   

14.
The conditions for high production of nisin Z and pediocin during pH-controlled, mixed-strain batch cultures in a supplemented whey permeate medium with Lactococcus lactis subsp. lactis biovar. diacetylactis UL719, a nisin Z producer strain, and variant T5 of Pediococcus acidilactici UL5, a pediocin-producing strain resistant to high concentrations of nisin, were studied. Mixed cultures were performed at 37 °C and pH 5·5 by first inoculating with variant T5 and then with L. diacetylactis UL719 after 8 h incubation, and were compared with single-strain batch cultures. High productions of both nisin Z and pediocin were obtained after 18 or 16 h incubation during mixed cultures, with titres of 3000 and 730 AU ml−1, or 1060 and 1360 AU ml−1, respectively, corresponding to approximately 75 and 55, or 25 and 100 mg l−1 of pure nisin Z and pediocin, respectively. In pure cultures, nisin Z and pediocin productions were higher than in mixed cultures, and maximum activities were obtained after 10 h incubation, with approximately 10 000 AU ml−1 (250 mg l−1 pure nisin Z) and 2500 AU ml−1 (190 mg l−1 pure pediocin). During mixed cultures, significant pediocin degradation was observed in the culture supernatant fluid after 16 h incubation, together with a sharp drop in Ped. acidilactici UL5 cell viability. In the test conditions, the feasibility of producing a nisin/pediocin mixture by mixed-strain fermentation was demonstrated. The bacteriocin mixture produced in a supplemented whey permeate medium could be used as a natural food-grade biopreservative with a broad activity spectrum.  相似文献   

15.
A highly specific antisera was produced in New Zealand white rabbits against nisin Z, a 3400 Da bacteriocin produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. A dot immunoblot assay was then developed to detect nisin Z in milk and whey. As few as 1·5 10−1 international units per ml (IU ml−1), corresponding to 0·003 μg ml−1 of pure nisin Z, were detected in carbonate-bicarbonate buffer within 6 h using chemiluminescence. When milk and whey samples were tested, approximately 0·155 μg ml−1 (7·9 IU ml−1) of nisin Z was detected. The detection limit obtained was lower than that of traditional methods including microtitration and agar diffusion.  相似文献   

16.
乳链菌肽高产菌株的选育及其基因定位   总被引:7,自引:4,他引:7  
以乳酸乳酸球菌7962为原始菌株,用紫外线、LiCl、(60)~Co及8-MOP+NUV等多种理化诱变剂对其进行诱变处理,获得一株乳链菌肽高产突变株AL2。其效价稳定在2300~2500Iu/ml。经DNA杂交证实,编码乳链菌肽的前体基因位于染色体上,其遗传性状是稳定的。毒理试验表明AL2及其产物属于实际无毒类物质。  相似文献   

17.
The production of nisin, biomass and lactic acid in pH-controlled and uncontrolled batch fermentation and batch fermentation (pH 5.5) with continuous removal of nisin was examined in the parent strain Lactococcus lactis N8 and LAC48. Strain LAC48 in batch fermentor (pH not controlled) gave a maximum nisin concentration of 2.5×106 IU g dcw–1. The nisin concentration remained high (2.0×106 IU g dcw–1) after the logarithmic growth phase (10–22 h), whereas nisin production of strain N8 decreased after the logarithmic growth phase. The maximum nisin production of strain LAC48 was not directly related to the biomass formation and not associated with growth. In order to study end product inhibition in nisin production, a system was built for adsorption of nisin during fermentation. The adsorbent Amberlite XAD-4 was found to have an effective binding capacity for nisin. Cells of LAC48 and N8 compensated for the removal of nisin, indicating that nisin production also occurs in the stationary phase.  相似文献   

18.
固定化乳酸乳球菌连续生产Nisin的研究   总被引:6,自引:0,他引:6  
以海藻酸钙为材料 ,固定乳酸乳球菌 (Lactococcuslactissubsp .lactis)SM5 2 6 ,研究不同条件对Nisin合成的影响。结果表明 ,利用 2 %海藻酸钠在 1 0mmol LCaCl2 条件下 ,得到的固定化细胞颗粒稳定性较好 ,可维持 90h无破裂 ;在发酵过程中SYS3培养基中的无机盐成分尤其磷酸盐对固定化颗粒有破坏作用 ;用mSYS3培养基代替SYS3 ,通过 72h三批次循环的半连续培养 ,Nisin活性为 85 0IU mL ,无明显的细胞渗漏现象。连续化生产 70h ,Nisin活性达 1 1 5 0IU mL ,相当于游离细胞的发酵水平。  相似文献   

19.
乳链菌肽前体基因(nisZ)在乳酸乳球菌中的克隆和表达   总被引:8,自引:1,他引:7  
用PCR技术从克隆有完整乳链菌肽生物合成基因簇(来自于乳链菌肽高产菌株L.lactis AL2)的重组噬菌体λHJ-3中扩增了编码乳链菌肽的前体基因,与pMG36e连接得到重组质粒pHJ201,用电击转化法将pHJ201转化到L.lactis NZ9800中,经活性测定和Tricine-SDS-PAGE电泳证实乳链菌肽前体基因获得了功能表达。DNA序列分析表明乳链菌肽高产菌株L.lactis AL2产生的是NisinZ。发现pHJ201d L.lactis NZ9800 中有良好的稳定性。  相似文献   

20.
Summary In a mineral salts medium containing yeast extract, NH4Cl and glucose (50g/L), the pH range producing the fastest growth ofZ. mobilis was 5.5–6.5 with an apparent optimum at 6.5. At constant growth rate of 0.15hr–1, the specific rates of glucose utilization (qs) and ethanol production (qp) were relatively unaffected by pH over the range 7.0–5.5 but increased sharply as the pH was further decreased below 5.5 to 4.0. Under these conditions the ethanol yield was unaffected by pH over the range 4.0–6.5 but decreased markedly at pH of 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号