首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

MicroRNAs (miRNAs) are a class of endogenous small regulatory RNAs. Identifications of the dys-regulated or perturbed miRNAs and their key target genes are important for understanding the regulatory networks associated with the studied cellular processes. Several computational methods have been developed to infer the perturbed miRNA regulatory networks by integrating genome-wide gene expression data and sequence-based miRNA-target predictions. However, most of them only use the expression information of the miRNA direct targets, rarely considering the secondary effects of miRNA perturbation on the global gene regulatory networks.

Results

We proposed a network propagation based method to infer the perturbed miRNAs and their key target genes by integrating gene expressions and global gene regulatory network information. The method used random walk with restart in gene regulatory networks to model the network effects of the miRNA perturbation. Then, it evaluated the significance of the correlation between the network effects of the miRNA perturbation and the gene differential expression levels with a forward searching strategy. Results show that our method outperformed several compared methods in rediscovering the experimentally perturbed miRNAs in cancer cell lines. Then, we applied it on a gene expression dataset of colorectal cancer clinical patient samples and inferred the perturbed miRNA regulatory networks of colorectal cancer, including several known oncogenic or tumor-suppressive miRNAs, such as miR-17, miR-26 and miR-145.

Conclusions

Our network propagation based method takes advantage of the network effect of the miRNA perturbation on its target genes. It is a useful approach to infer the perturbed miRNAs and their key target genes associated with the studied biological processes using gene expression data.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-255) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of ‘omics’ data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis.

Results

We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions.

Conclusions

Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0386-y) contains supplementary material, which is available to authorized users.  相似文献   

3.
With the popularization of microarray experi-ments in biomedical laboratories, how to make context-specific knowledge discovery from expression data becomes a hot topic. While the static "reference networks"for key model organisms are nearly at hand, the endeavors to recover context-specific network modules are still at the beginning. Currently, this is achieved through filtering existing edges of the ensemble reference network or constructing gene networks ab initio. In this paper, we briefly review recent progress in the field and point out some research directions awaiting improved work, includ-ing expression-data-guided revision of reference networks.  相似文献   

4.
5.
The epigenome represents a major regulatory interface to the eukaryotic genome. Nucleosome positions, histone variants, histone modifications and chromatin associated proteins all play a role in the epigenetic regulation of DNA function.  相似文献   

6.
7.
8.
9.
With the advent of the microarray technology, the field of life science has been greatly revolutionized, since this technique allows the simultaneous monitoring of the expression levels of thousands of genes in a particular organism. However, the statistical analysis of expression data has its own challenges, primarily because of the huge amount of data that is to be dealt with, and also because of the presence of noise, which is almost an inherent characteristic of microarray data. Clustering is one tool used to mine meaningful patterns from microarray data. In this paper, we present a novel method of clustering yeast microarray data, which is robust and yet simple to implement. It identifies the best clusters from a given dataset on the basis of the population of the clusters as well as the variance of the feature values of the members from the cluster-center. It has been found to yield satisfactory results even in the presence of noisy data.  相似文献   

10.
拟南芥在盐胁迫环境下SOS转录调控网络的构建及分析   总被引:4,自引:0,他引:4  
谢崇波  金谷雷  徐海明  朱军 《遗传》2010,32(6):639-646
研究拟南芥在高浓度盐处理环境下的基因调控网络, 有助于了解其在盐胁迫环境下保持正常生长的防御机制。针对目前广泛研究的SOS (Salt Overly Sensitive)耐盐机制, 文章整合公共数据库中盐胁迫相关的拟南芥基因组表达谱芯片, 通过反向工程方法构建了拟南芥在盐胁迫状态下的SOS转录调控网络。所获得的调控网络包含70个盐胁迫相关且高度互作的互作基因, 其中27个转录因子为主要调控节点。进而根据SOS核心基因的表达特性, 所得调控网络内的不同表达模式得到了鉴别。  相似文献   

11.
12.
We construct a neuronal network to model the logic of associative conditioning as revealed in experimental results using the terrestrial mollusk Limax maximus. We show, in particular, how blocking to a previously conditioned stimulus in the presence of the unconditional stimulus, can emerge as a dynamical property of the network. We also propose experiments to test the new model. Action Editor: G. Bard Ermentrout  相似文献   

13.
14.
15.
16.
17.
It is shown here how gene knock-out experiments can be simulated in Random Boolean Networks (RBN), which are well-known simplified models of genetic networks. The results of the simulations are presented and compared with those of actual experiments in S. cerevisiae. RBN with two incoming links per node have been considered, and the Boolean functions have been chosen at random among the set of so-called canalizing functions. Genes are knocked-out (i.e. silenced) one at a time, and the variations in the expression levels of the other genes, with respect to the unperturbed case, are considered. Two important variables are defined: (i) avalanches, which measure the size of the perturbation generated by knocking out a single gene, and (ii) susceptibilities, which measure how often the expression of a given gene is modified in these experiments. A remarkable observation is that the distributions of avalanches and susceptibilities are very robust, i.e. they are very similar in different random networks; this should be contrasted with the distribution of other variables that show a high variance in RBN. Moreover, the distribution of avalanches and susceptibilities of the RBN models are close to those observed in actual experiments performed with S. cerevisiae, where the changes in gene expression levels have been recorded with DNA microarrays. These findings suggest that these distributions might be "generic" properties, common to a wide range of genetic models and real genetic networks. The importance of such generic properties is discussed.  相似文献   

18.
19.
The carcinogenicity of drugs can have a serious impact on human health, so carcinogenicity testing of new compounds is very necessary before being put on the market. Currently, many methods have been used to predict the carcinogenicity of compounds. However, most methods have limited predictive power and there is still much room for improvement. In this study, we construct a deep learning model based on capsule network and attention mechanism named DCAMCP to discriminate between carcinogenic and non-carcinogenic compounds. We train the DCAMCP on a dataset containing 1564 different compounds through their molecular fingerprints and molecular graph features. The trained model is validated by fivefold cross-validation and external validation. DCAMCP achieves an average accuracy (ACC) of 0.718 ± 0.009, sensitivity (SE) of 0.721 ± 0.006, specificity (SP) of 0.715 ± 0.014 and area under the receiver-operating characteristic curve (AUC) of 0.793 ± 0.012. Meanwhile, comparable results can be achieved on an external validation dataset containing 100 compounds, with an ACC of 0.750, SE of 0.778, SP of 0.727 and AUC of 0.811, which demonstrate the reliability of DCAMCP. The results indicate that our model has made progress in cancer risk assessment and could be used as an efficient tool in drug design.  相似文献   

20.
Huang T  Zhang J  Xu ZP  Hu LL  Chen L  Shao JL  Zhang L  Kong XY  Cai YD  Chou KC 《Biochimie》2012,94(4):1017-1025
Longevity is one of the most basic and one of the most essential properties of all living organisms. Identification of genes that regulate longevity would increase understanding of the mechanisms of aging, so as to help facilitate anti-aging intervention and extend the life span. In this study, based on the network features and the biochemical/physicochemical features of the deletion network and deletion genes, as well as their functional features, a two-layer model was developed for predicting the deletion effects on yeast longevity. The first stage of our prediction approach was to identify whether the deletion of one gene would change the life span of yeast; if it did, the second stage of our procedure would automatically proceed to predict whether the deletion of one gene would increase or decrease the life span. It was observed by analyzing the predicted results that the functional features (such as mitochondrial function and chromatin silencing), the network features (such as the edge density and edge weight density of the deletion network), and the local centrality of deletion gene, would have important impact for predicting the deletion effects on longevity. It is anticipated that our model may become a useful tool for studying longevity from the angle of genes and networks. Moreover, it has not escaped our notice that, after some modification, the current model can also be used to study many other phenotype prediction problems from the angle of systems biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号