首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S. cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.  相似文献   

3.
The succeptibility of Saccharomyces cerevisiae to the anti-microbial peptide, histatin 5, was tested after pre-growth in fermentable and non-fermentable carbon sources and in the absence or presence of the uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP). S. cerevisiae was more resistant to histatin 5 when grown on a fermentable carbon source compared to growth on a non-fermentable carbon source, indicating an important role for oxidative phosphorylation in histatin 5-induced cell death. Oxidative phosphorylation is a pre-requisite for histatin 5-induced cell death in Candida albicans but this is not the case in S. cerevisiae. Incubation of CCCP-treated S. cerevisiae cells with histatin 5 still resulted in cell death. These results suggest that histatin 5-induced cell death in S. cerevisiae differs from that in C. albicans.Revisions received 28 September 2004  相似文献   

4.
Gsp1p is a small nuclear-located GTP binding protein from the yeast Saccharomyces cerevisiae. It is highly conserved among eucaryotic cells and is involved in numerous cellular processes, including nucleocytoplasmic trafficking of macromolecules. To learn more about the GSP1 structure/function, we have characterized its Candida albicans homologue. CaGsp1p is 214 amino acids long and displays 91% identity to the ScGsp1p. There is functional complementation in S. cerevisiae, and its mRNA is constitutively expressed in the diploid C. albicans grown under various physiological conditions. Disruption of both alleles was not possible, suggesting that it could be an essential gene, but heterozygous mutants exhibited genomic instability.  相似文献   

5.
In the budding yeast Saccharomyces cerevisiae, progress of the cell cycle beyond the major control point in G1 phase, termed START, requires activation of the evolutionarily conserved Cdc28 protein kinase by direct association with GI cyclins. We have used a conditional lethal mutation in CDC28 of S. cerevisiae to clone a functional homologue from the human fungal pathogen Candida albicans. The protein sequence, deduced from the nucleotide sequence, is 79% identical to that of S. cerevisiae Cdc28 and as such is the most closely related protein yet identified. We have also isolated from C. albicans two genes encoding putative G1 cyclins, by their ability to rescue a conditional GI cyclin defect in S. cerevisiae; one of these genes encodes a protein of 697 amino acids and is identical to the product of the previously described CCN1 gene. The second gene codes for a protein of 465 residues, which has significant homology to S. cerevisiae Cln3. These data suggest that the events and regulatory mechanisms operating at START are highly conserved between these two organisms.  相似文献   

6.
Plasmids containing derivatives of the Saccharomyces cerevisiae leucyl-tRNA (tRNA3 3 Leu ) gene that vary in anticodon sequence were constructed and transformed into the pathogen Candida albicans and S. cerevisiae. C. albicans could readily be transformed with plasmids encoding leucyl-tRNA genes with the anticodons CAA and UAA (recognizing the codons UUG and UUA) and expression of the heterologous tRNALeu could be demonstrated by Northern RNA blotting. In contrast, no transformants were obtained if the anticodons were UAG (codons recognized CUN, UUR) and CAG (codon CUG), indicating that the insertion of leucine at CUG codons is toxic for C. albicans. All tRNALeu-encoding plasmids transformed S. cerevisiae with equally high efficiencies. These results provide in vivo evidence that non-standard decoding of CUG codons is essential for the viability of C. albicans.  相似文献   

7.
Antigenic mannans isolated from the cells ofSaccharomyces fermentati, Saccharomyces rosei,Saccharomyces delbrueckii, Torulopsis colliculosa, Candida albicans andSaccharomyces cerevisiae were examined for their reactivity withSaccharomyces fermentati andCandida albicans antisera. Mannans ofTorulaspora as well asCandida albicans showed high cross-reactivity with the investigated antisera, which could be due to the presence of long side chains established by the partial acetolysis method. The low specific rotations ofSaccharomyces fermentati, Saccharomyces rosei andTorulopsis colliculosa mannans indicate a predominance of β-glycosidio linkages, whereasSaccharomyces delbrueckii andCandida albicans mannans possess predominantly α-linkages.Saccharomyces cerevisiae mannan showed different structural and immunological properties.  相似文献   

8.
Humans are exposed much more often to exogenous Saccharomyces cerevisiae (a baker’s yeast) than exogenous Candida albicans (a highly infectious yeast) but suffer no apparent complications from S. cerevisiae. We hypothesize that variations in characteristics between these two species may be due, in part, to differences in glycine metabolism. In this study, we examined differences in glycine oxidation between C. albicans and S. cerevisiae. Both C. albicans and S. cerevisiae were cultured in glycine enriched media, followed by determination of glycine oxidation and amino acid concentrations in cells. Glycine was degraded to a much greater extent in C. albicans than in S. cerevisiae. Threonine concentrations and glycine oxidation were also elevated in C. albicans. Almost all of the disappearance of glycine from incubation media was accounted for by the formation of serine, threonine, and CO2 in S. cerevisiae, whereas these products represented only 50% of the metabolized glycine in C. albicans. The unidentified metabolites of glycine in C. albicans, presumably purines, could contribute to its infectious capacity and this warrants further study.  相似文献   

9.
Summary A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans for selection and replication in yeasts, and bla (ampicillin resistance) and ori for selection and replication in E. coli. S. cerevisiae AH22 (Leu) was transformed by pRC2312 to Leu at a frequency of 1.41 × 105 colonies per g DNA. Transformation of C. albicans SGY-243 (Ura-) to Ura+ with pRC2312 resulted in smaller transformant colonies at a frequency of 5.42 × 103 per g DNA where the plasmid replicated autonomously in transformed cells, and larger transformant colonies at a frequency of 32 per g DNA, in which plasmid integrated into the genome. Plasmid copy number in yeasts was determined by a DNA hybridization method and was estimated to be 15±3 per haploid genome in S. cerevisiae and 2–3 per genome in C. albicans replicative transformants. Multiple tandem integration occurred in integrative transformants and copy number of the integrated sequence was estimated to be 7–12 per diploid genome. The C. albicans ADE2 gene was ligated into plasmid pRC2312 and the construct transformed Ade strains of both C. albicans and S. cerevisiae to Ade+. The vector pRC2312 was also used to clone a fragment of C. albicans genomic DNA containing an aspartic proteinase gene. C. albicans transformants harboring this plasmid showed a two-fold increase in aspartic proteinase activity. However S. cerevisiae transformants showed no such increase in proteinase activity, suggesting the gene was not expressed in S. cerevisiae.  相似文献   

10.
Paracoccidioidomycosis (PCM) is a disease caused by the Paracoccidioides genus, which includes P. brasiliensis and the new phylogenetic species P. lutzii. Resistance to this infection has been correlated with a Th1 pattern of cellular immune response, while susceptibility is correlated to an intense humoral immune response with an increase in IgE levels. Serum levels of IgE and IgG anti-gp70 and anti-exoantigen in chronic PCM were analyzed by enzyme-linked immunosorbent assay. Results showed a higher gp70 concentration in somatic antigen (SA) than in cell-free antigen (CFA) preparation and significantly higher levels of IgE and IgG anti-gp70 in chronic PCM patients’ serum (n = 12) than in normal human serum (n = 12) (p < 0.05). Pearson’s correlation analysis showed a strong correlation between IgG and IgE anti-gp70 (r = 0.8424). Additionally, IgE purified from a pool of acute and chronic PCM patient’s serum was analyzed by immunoblotting. The patients with the acute form of the disease showed strong bands for gp43 and gp70 in SA but only for gp43 in CFA. In patients with the chronic form, solely the gp43 band was observed. In conclusion, we found that SA is a better source of gp70 than CFA is, and chronic PCM patients show high levels of IgE anti-gp70. This finding suggests that the Th2 immune response is potentially induced by gp70 in PCM disease, which calls for further study.  相似文献   

11.
Comparative genomics of yeast species: new insights into their biology   总被引:2,自引:0,他引:2  
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.  相似文献   

12.
The effect of amphotericin B (AMPH) on vacuolation in the budding yeastsSaccharomyces cerevisiae andCandida albicans was studied. The minimum inhibitory concentration of AMPH for growth ofS. cerevisiae andC. albicans was 1 µg/ml. In untreated control cultures, mature cells had large central vacuoles in the exponential phase, which hampered the detection of vacuolation effect. Small buds in untreated exponential phase cells, however, only rarely showed vacuoles under the light microscope. Treatment with 0.2 µg/ml of AMPH for 20–30 min induced extensive vacuolation not only in mothers but also buds ofS. cerevisiae. Extensive vacuolation lasted 4 h or more, and growth rate of the cells was much reduced for 8 h or more. Vacuolation itself was not fatal: on removal of the drug most cells gradually recovered from vacuolation and eventually multiplied. A similar effect of AMPH was also observed inC. albicans but at a higher concentration (0.5 µg/ml).  相似文献   

13.
Ansamitocins in combination with amphotericin B produced synergistic inhibition on the growth of several yeasts in liquid cultures, Ansamitocin P–3 at 5 µg/ml completely suppressed the growth of Saccharomyces cerevisiae whereas ansamitocin P–3 alone at 50 µg/ml hardly affected growth. Ansamitocin P–4 and maytansine also showed synergistic activity with amphotericin B against S. cerevisiae. The synergism also occurred in cultures of Candida albicans and Hansenula anomala. Combinations of ansamitocin P–3 with various agents revealed that the synergism depended on the specific property of amphotericin B. Ansamitocins showed no interfering activity against regeneration of protoplasts of S. cerevisiae. These results suggest that the limited activity of ansamitocins against these yeasts is due to the membrane permeability barrier of these cells.  相似文献   

14.
15.
The nature of the cross reaction of the mycelial mannan of Trichophyton rubrum and galactomannan isolated from the culture medium of Aspergillus fumigatus with antisera of Saccharomyces cerevisiae and Candida albicans is described. Cross-reactivity of polysaccharides of both T. rubrum and A. fumigatus was weak with antisera of C. albicans and S. cerevisiae, but the galactomannan of A. fumigatus showed slightly stronger activity than the mannan of T. rubrum which possesses more closely related chemical structure of the mannans of S. cerevisiae and C. albicans.  相似文献   

16.
Summary The CDC4 gene of Saccharomyces cerevisiae encodes an essential function that is required for G1-S and G2-M transitions during mitosis and at various stages during meiosis. We have isolated a functional homologue of CDC4 (CaCDC4) from the pathogenic yeast Candida albicans by complementing the S. cerevisiae cdc4-3 mutation with CaCDC4 expressed from its own promoter on a single-copy vector. The predicted product of CaCDC4 has 37% overall identity to the S. cerevisiae Cdc4 protein, although this identity is biased towards the C-terminal region of the two proteins which contains eight copies of the degenerate WD-40 motif, an element found in proteins that regulate diverse biological processes and an F-box domain proximal to the first iteration of the WD-40 motif. Both the F-box domain and WD-40 motifs appear necessary for the mitotic functions of Cdc4 in both yeasts. In contrast to its conserved role in mitosis, C. albicans CDC4 is unable to rescue the meiotic deficiency in a S. cerevisiae cdc4 homozygous diploid under restrictive conditions, even when expressed from an efficient S. cerevisiae promoter. In opposition to S. cerevisiae CDC4 being essential, C. albicans CDC4 appears to be nonessential and in its absence is critical for filamentous growth in C. albicans.  相似文献   

17.
Codon usage patterns in 16 chromosomes coincided with each other in Saccharomyces cerevisiae, and the same result was obtained from Encephalitozoon cuniculi consisting of 11 chromosomes, although each chromosome function differs. In addition, preferential codon usage in the regenerated coding systems for Leu and Lys differed between Saccharomyces cerevisiae and Encephalitozoon cuniculi. These results cannot be explained by Darwins natural selection theory or by the neutral theory proposed against Darwins. Furthermore, the codon usage patterns were examined in both prokaryotes and eukaryotes. The use of G or C at the third codon position was much lower than T or A in Ureaplasma urealyticum, whereas inversely the use of G or C at the third codon position was much higher than T or A in Mycobacterium tuberculosis. Additionally, Candida albicans and Plasmodium falciparum also showed a very low usage of G or C at the third codon position. It is a difficult leap to speculate that the inverse codon usage change occurred over the genome during biological evolution. Thus, the present results strongly suggest that organisms were derived from different origins, indicating that the origin of life was plural, based on genomic structures.  相似文献   

18.
Crude mannans extracted from Candida albicans and Saccharomyces cerevisiae by autoclaving yeast cells in citrate buffer (pH 7.0) according to Peat's method, were fractionated repeatedly by column chromatography on DEAE-Sephadex, acetate form, yielding neutral and acidic mannans. The former fraction showed a single peak by boundary electrophoresis and ultracentrifugal analysis, while the latter contained small amounts of phosphorus and protein. Using purified mannans as controls, various serological experiments were carried out with mannan antigens extracted from C. albicans with 45% phenol water and with 3% NaOH. No remarkable differences were observed in the antigenic activity of 4 mannan antigens from C. albicans, and the purified mannan exhibited very high antigenic activity. It was found that the mannan of S. cerevisiae was antigenically less specific than that of C. albicans mannan. The difference in serological specificity between mannans of both species may reflect not only differences in mannopyranose linkages but differences in the structure of the macromolecules.  相似文献   

19.
Two regulatory pathways govern filamentation in the pathogenic fungus Candida albicans. Recent virulence studies of filamentation regulatory mutants argue that both yeast and filamentous forms have roles in infection. Filamentation control pathways seem closely related in C. albicans and in Saccharomyces cerevisiae, thus permitting speculation about C. albicans filamentation genes not yet discovered.  相似文献   

20.
Microbial surfactants are environmentally friendly products with amazing properties and spectrum of applications. It is therefore, not surprising that research has increased in recent time with the objectives of sourcing for novel surface-active compounds with dual functions in oil and pharmaceutical industries. Evaluation of hydrocarbon degrading potentials and emulsifying activities indicated that biosurfactants were produced by two newly isolated and promising yeast strains, Saccharomyces cerevisiae and Candida albicans, obtained from a polluted lagoon water. Both strains were able to grow effectively on crude oil and diesel as sole sources of carbon and energy. Growth curves on diesel were obtained to establish the relation between cell growth and biosurfactant production. The growth peak was on the 8th day while the specific growth rate ranged insignificantly (P < 0.05) between 0.46 and 0.48 day−1. Interestingly, biosurfactant was detected on the 2nd day when growth was almost inexistent, with maximal production obtained at stationary/death phase of growth. The partially-purified biosurfactants exhibited antimicrobial activities by completely inhibiting the growth of clinical strains of Escherichia coli and Staphylococcus aureus at all concentrations tested. Although C. albicans appeared to be a better diesel-utilizer and biosurfactant-producer (E24 = 64.2%), the potency of its surfactant was smaller than that of S. cerevisiae. These strains represent a new class of biosurfactant producers that have potential for use in a variety of biotechnological and industrial processes particularly in the pharmaceutical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号