首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Freezing tolerance is the result of a wide range of physical and biochemical processes, such as the induction of antifreeze proteins, changes in membrane composition, the accumulation of osmoprotectants, and changes in the redox status, which allow plants to function at low temperatures. Even in frost-tolerant species, a certain period of growth at low but nonfreezing temperatures, known as frost or cold hardening, is required for the development of a high level of frost hardiness. It has long been known that frost hardening at low temperature under low light intensity is much less effective than under normal light conditions; it has also been shown that elevated light intensity at normal temperatures may partly replace the cold-hardening period. Earlier results indicated that cold acclimation reflects a response to a chloroplastic redox signal while the effects of excitation pressure extend beyond photosynthetic acclimation, influencing plant morphology and the expression of certain nuclear genes involved in cold acclimation. Recent results have shown that not only are parameters closely linked to the photosynthetic electron transport processes affected by light during hardening at low temperature, but light may also have an influence on the expression level of several other cold-related genes; several cold-acclimation processes can function efficiently only in the presence of light. The present review provides an overview of mechanisms that may explain how light improves the freezing tolerance of plants during the cold-hardening period.  相似文献   

3.
细胞质膜在罗非鱼和叉尾斗鱼低温驯化过程中的功能   总被引:1,自引:0,他引:1  
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(6):1150-1159
研究通过一系列科学的指标,比如死亡温度、累计温度处理时间和存活率曲线,检测并比较了吉富罗非鱼和叉尾斗鱼的低温耐受能力,然后系统地检测了在两种鱼中,低温对一系列与细胞膜相关的生理指标的影响,包括细胞膜流动性、内吞作用和膜蛋白Na+, K+ -ATPase的活性。实验结果显示叉尾斗鱼比吉富罗非鱼有着明显优良的耐寒力。两种鱼内与细胞膜相关的生理指标都对温度敏感,但是具体的敏感程度却在耐寒种(叉尾斗鱼)和不耐寒种(吉富罗非鱼)之间存在显著差异。在具体每个物种内部,与细胞膜相关的一系列生理功能对温度的敏感程度是一致的。所有这些种间差异性和种内一致性都使得细胞膜流动性在物种耐寒过程中的重要性凸显出来。结果揭示细胞质膜,尤其是质膜流动性可能在这两种鱼对低温适应过程中扮演重要的角色。    相似文献   

4.
5.
Abstract When resources are limited, there is a trade-off between growth/reproduction and stress defense in plants. Most temperate plant species, including Arabidopsis thaliana, can enhance freezing tolerance through cold acclimation at low but nonfreezing temperatures. Induction of the cold acclimation pathway should be beneficial in environments where plants frequently encounter freezing stress, but it might represent a cost in environments where freezing events are rare. In A. thaliana, induction of the cold acclimation pathway critically involves a small subfamily of genes known as the CBFs. Here we test for a cost of cold acclimation by utilizing (1) natural accessions of A. thaliana that originate from different regions of the species' native range and that have experienced different patterns of historical selection on their CBF genes and (2) transgenic CBF overexpression and T-DNA insertion (knockdown/knockout) lines. While benefits of cold acclimation in the presence of freezing stress were confirmed, no cost of cold acclimation was detected in the absence of freezing stress. These findings suggest that cold acclimation is unlikely to be selected against in warmer environments and that naturally occurring mutations disrupting CBF function in the southern part of the species range are likely to be selectively neutral. An unanticipated finding was that cold acclimation in the absence of a subsequent freezing stress resulted in increased fruit production, that is, fitness.  相似文献   

6.
The frost hardiness of many plants such as chickpea can be increased by exposure to low non-freezing temperatures and/or the application of abscisic acid (ABA), a process known as frost acclimation. Experiments were conducted to study the response over a 14 d period of enriched plasma membrane fractions isolated from chickpea plants exposed to low temperature and sprayed with exogenous ABA. Measurement of the temperatures inducing 50% foliar cell death (LT50), and subsequent statistical analysis suggest that, like many plants, exposure to low temperatures (5/-2 degrees C; day/night) induces a significant level (P <0.05) of frost acclimation in chickpea when compared with control plants (20/7 degrees C; day/night). Spraying plants with exogenous ABA also increased frost tolerance (P <0.05), but was not as effective as low temperature-induced frost acclimation. Both pre-exposure to low temperatures and pre-treatment with ABA increased the levels of fatty acid desaturation in the plasma membrane (measured as the double bond index, DBI). Exposure of chickpea plants to low temperatures increased the DBI by 15% at day 4 and 19% at day 14 when compared with untreated control plants. Application of ABA alone did not increase the DBI by more than 6% at any time; the effects of both treatments applied together was more than additive, inducing a DBI increase of 27% at day 14 when compared with controls. There was a good correlation (P <0.05) between the DBI and LT50, suggesting that the presence of more unsaturated lipid in the plasma membrane may prevent cell lysis at low temperatures. Both pre-exposure to low, non-freezing temperatures and pre-treatment with ABA induced measurable changes in membrane fluidity, but these changes did not correlate with changes in LT50, suggesting that physical properties of the plasma membrane other than fluidity are involved in frost acclimation in chickpea.  相似文献   

7.
8.
9.
Cold stress causes unsaturation of the membrane lipids. This leads to adjustment of the membrane fluidity, which is necessary for cold acclimation of cells. Here we demonstrate that the cold-induced accumulation of PUFAs in the cyanobacterium Synechocystis is light-dependent. The desA(-)/desD(-) mutant, that lacks the genes for Δ12 and Δ6 desaturases, is still able to adjust the fluidity of its membranes in spite of its inability to synthesize PUFAs and modulate the fatty acid composition of the membrane lipids under cold stress. The expression of cold-induced genes, which are controlled by the cold sensor histidine kinase Hik33, depends on the fluidity of cell membranes and it is regulated by light, though it does not require the activity of the photosynthetic apparatus. The expression of cold-induced genes, which are not controlled by Hik33, does not depend on the membrane fluidity or light. Thus, membrane fluidity determines the temperature dependence of the expression of cold-induced genes that are under control of the Hik33, which might be the sensor of changes in the membrane fluidity. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

10.
Cold acclimation is the phenomenon in which plants are exposed to low, but nonfreezing, temperatures before exposure to drastic temperatures. To investigate how sunflower plants adjust their metabolism during cold treatment, a comparative proteomic approach, based on spectral counting data, was adopted to identify differentially expressed proteins in leaves of freezing susceptible (Hopi) and tolerant (PI 543006 and BSD-2-691) lines after cold acclimation. In total 718, 675, and 769 proteins were confidently identified by tandem mass spectrometry in Hopi, PI 543006, and BSD-2-691 sunflower lines. Tolerant lines PI 543006 and BSD-2-691 showed the highest number of differentially expressed proteins, as 43, 72, and 168 proteins changed their expression in Hopi, PI 543006, and BSD-2-691 sunflower lines, respectively, at 95% confidence. Cold-responsive proteins were mostly involved in metabolism, protein synthesis, energy, and defense processes in all sunflower lines studied. Hierarchical clustering of all differentially expressed proteins resulted in the characterization of 14 different patterns of expression across Hopi, PI 543006, and BSD-2-691 and indicated that tolerant lines showed different proteome responses to cold acclimation.  相似文献   

11.
12.
13.
14.
Cold acclimation of plants is a complex process involving a number of biochemical and physiological changes. The ability to cold acclimate is under genetic control. The development of freezing tolerance in woody plants is generally triggered by non-freezing low temperatures but can also be induced by mild drought or exogenous abscisic acid, as well as by short photoperiod. In nature, the extreme freezing tolerance of woody plants is achieved during sequential stages of cold acclimation the first of which is initiated by short photoperiods and non-freezing low temperatures, and the second by freezing temperatures. Although recent breakthroughs have increased our knowledge on the physiological molecular basis of freezing tolerance in herbaceous species, which acclimate primarily in response to non-freezing low temperatures, very little is known about cold acclimation of woody plants. This article attempts to review our current understanding of the physiological aspects that underline cold acclimation in woody plants.  相似文献   

15.
Many plants acquire increased freezing tolerance when they are exposed to nonfreezing temperatures of a certain duration. This process is known as cold acclimation and allows plants to protect themselves from freezing injury. A wide variety of polypeptides are induced during cold acclimation, among which is one encoded by COR15A in Arabidopsis (Arabidopsis thaliana). Previous studies showed that the COR15A gene encodes a small, plastid-targeted polypeptide that is processed to a mature form called Cor15am. In this study, we examined the biochemical properties and activities of Cor15am in more detail. We provide evidence that Cor15am localizes almost exclusively to the chloroplast stroma. In addition, the cold-regulated accumulation of Cor15am is affected by chloroplast functionality. Both gel-filtration chromatography and protein cross-linking reveal that Cor15am forms oligomers in the stroma of chloroplasts. Although Cor15am accumulates in response to low temperature, cold acclimation is not a prerequisite for oligomerization of Cor15am. Structural analysis suggests that Cor15am is composed of both ordered and random structures, and can stay soluble with small structural change after boiling and freeze-thaw treatments. Recombinant Cor15am exhibits in vitro cryoprotection of a freeze-labile enzyme, l-lactate dehydrogenase. Furthermore, Cor15am is capable of associating with l-lactate dehydrogenase in vitro and with potential stromal substrates in vivo. On the basis of these results, we propose that Arabidopsis Cor15am is a cryoprotective protein that forms oligomers in the chloroplast stroma, and that direct association of Cor15am with its substrates is part of its cryoprotective mechanism.  相似文献   

16.
植物抗寒及其基因表达研究进展   总被引:6,自引:0,他引:6  
曹琴  孔维府  温鹏飞 《生态学报》2004,24(4):806-811
植物经过逐渐降低的温度从而提高抗寒能力 ,这个过程被人们称为低温驯化。植物低温驯化过程是一个复杂的生理、生化和能量代谢变化过程 ,这些变化主要包括膜系统的稳定性、可溶性蛋白的积累和小分子渗透物质 ,比如脯氨酸、糖等 ,这些变化中的一些是植物抗寒必需的 ,而另外一些变化不是必需的。主要对冷害和低温生理生化变化、低温诱导表达基因的功能和作用、低温驯化的调节机制及其信号转导方面进行了综述。通过差别筛选 c DNA文库的方法已经鉴定了许多低温诱导表达、进而提高植物抗寒能力的基因 ,其中有脱水素、COR基因和 CBF1转录因子等。低温信号的感受、转导和调节表达是低温驯化的关键环节 ,低温信号的转导过程与干旱胁迫之间具有一定的交叉 ,这为利用 ABA等来提高植物抗寒能力成为可能 ,相信不久的将来人们可以通过提高植物抗寒能力从而增加经济产量成为现实。  相似文献   

17.
Physiological and molecular changes in plants grown at low temperatures   总被引:5,自引:0,他引:5  
Theocharis A  Clément C  Barka EA 《Planta》2012,235(6):1091-1105
  相似文献   

18.
Many temperate plant species such as Arabidopsis thaliana are able to increase their freezing tolerance when exposed to low, nonfreezing temperatures in a process called cold acclimation. This process is accompanied by complex changes in gene expression. Previous studies have investigated these changes but have mainly focused on individual or small groups of genes. We present a comprehensive statistical analysis of the genome-wide changes of gene expression in response to 14 d of cold acclimation in Arabidopsis, and provide a large-scale validation of these data by comparing datasets obtained for the Affymetrix ATH1 Genechip and MWG 50-mer oligonucleotide whole-genome microarrays. We combine these datasets with existing published and publicly available data investigating Arabidopsis gene expression in response to low temperature. All data are integrated into a database detailing the cold responsiveness of 22,043 genes as a function of time of exposure at low temperature. We concentrate our functional analysis on global changes marking relevant pathways or functional groups of genes. These analyses provide a statistical basis for many previously reported changes, identify so far unreported changes, and show which processes predominate during different times of cold acclimation. This approach offers the fullest characterization of global changes in gene expression in response to low temperature available to date.  相似文献   

19.
The thermal stability of excitation transfer from pigment proteins to the Photosystem II reaction center of Nerium oleander adjusts by 10 Celsius degrees when cloned plants grown at 20°C/15°C, day/night growth temperatures are shifted to 45°C/32°C growth temperature or vice versa. Concomitant with this adjustment is a decrease in the fluidity of thylakoid membrane polar lipids as determined by spin labeling. The results are consistent with the hypothesis that there is a limiting maximum fluidity compatible with maintenance of native membrane structure and function. This limiting fluidity was about the same as for a number of other species which exhibit a range of thermal stabilities. Inversely correlated shifts in lipid fluidity and thermal stability occurred during the time course of acclimation of N. oleander to new growth temperatures. Thus, the temperature at which the limiting fluidity was reached changed during acclimation while the limiting fluidity remained constant. Although the relative proportion of the major classes of membrane polar lipids remained constant during adjustments in fluidity, large changes occured in the abundance of specific fatty acids. These changes were different for the phospho- and galacto-lipids suggesting that the fatty acid composition of these two lipid classes is regulated by different mechanisms. Comparisons between membrane lipid fluidity and fatty acid composition indicate that fluidity is not a simple linear function of fatty acid composition.  相似文献   

20.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号