首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The presence of 6-methyladenine and 5-methylcytosine at Dam (GATC) and Dcm (CCA/TGG) sites in DNA of mycobacterial species was investigated using isoschizomer restriction enzymes. In all species examined, Dam and Dcm recognition sequences were not methylated indicating the absence of these methyltransferases. On the other hand, high performance liquid chromatographic analysis of genomic DNA from Mycobacterium smegmatis and Mycobacterium tuberculosis showed significant levels of 6-methyladenine and 5-methylcytosine suggesting the presence of DNA methyltransferases other than Dam and Dcm. Occurrence of methylation was also established by a sensitive genetic assay.  相似文献   

2.
The frequency and distribution of methylated cytosine (5-MeC) at CC T A GG (Dcm sites) in 49 E. coli DNA loci (207,530 bp) were determined. Principal observations of this analysis were: (1) Dcm frequency was higher than expected from random occurrence but lower than calculated with Markov chain analysis; (2) CCTGG sites were found more frequently in coding than in noncoding regions, while the opposite was true for CCAGG sites; (3) Dcm site distribution does not exhibit any identifiably regular pattern on the chromosome; (4) Dcm sites at oriC are probably not important for accurate initiation of DNA replication; (5) 5-MeC in codons was more frequently found in first than in second and third positions; (6) there are probably few genes in which the mutation rate is determined mainly by DNA methylation. It is proposed that the function of Dcm methylase is to protect chromosomal DNA from restriction-enzyme EcoRII. The Dcm methylation contribution to determine frequency of oligonucleotides, mutation rate, and recombination level, and thus evolution of the E. coli genome, could be interpreted as a consequence of the acquisition of this methylation.Correspondence to: M.C. Gómez-Eichelmann  相似文献   

3.
The presence of CC(A/T)GG sequences with methylated internal cytosine (Dcm methylation) was determined in DNA from different genera of eubacteria. This methylation was studied by using restriction enzymes EcoRII and BstNI, which cleave unmethylated or methylated CC(A/T)GG sequences. Dcm methylation was only detected in genera of the family Enterobacteriaceae closely related to Escherichia: Shigella, Citrobacter, Salmonella, and Klebsiella.  相似文献   

4.
In prokaryotic genomes, some DNA methyltransferases form a restriction-modification gene complex, but some others are present by themselves. Dcm gene product, one of these orphan methyltransferases found in Escherichia coli and related bacteria, methylates DNA to generate 5'-C(m)CWGG just as some of its eukaryotic homologues do. Vsr mismatch repair function of an adjacent gene prevents C-to-T mutagenesis enhanced by this methylation but promotes other types of mutation and likely has affected genome evolution. The reason for the existence of the dcm-vsr gene pair has been unclear. Earlier we found that several restriction-modification gene complexes behave selfishly in that their loss from a cell leads to cell killing through restriction attack on the genome. There is also increasing evidence for their potential mobility. EcoRII restriction-modification gene complex recognizes the same sequence as Dcm, and its methyltransferase is phylogenetically related to Dcm. In the present work, we found that stabilization of maintenance of a plasmid by linkage of EcoRII gene complex, likely through postsegregational cell killing, is diminished by dcm function. Disturbance of EcoRII restriction-modification gene complex led to extensive chromosome degradation and severe loss of cell viability. This cell killing was partially suppressed by chromosomal dcm and completely abolished by dcm expressed from a plasmid. Dcm, therefore, can play the role of a "molecular vaccine" by defending the genome against parasitism by a restriction-modification gene complex.  相似文献   

5.
AIMS: Polish isolates of pectinolytic bacteria from the species Pectobacterium carotovorum were screened for the presence of a DNA restriction-modification (R-M) system. METHODS AND RESULTS: Eighty-nine strains of P. carotovorum were isolated from infected potato plants. Sixty-six strains belonged to P. carotovorum ssp. atrosepticum and 23 to P. carotovorum ssp. carotovorum. The presence of restriction enzyme Pca17AI, which is an isoschizomer of EcoRII endonuclease, was observed in all isolates of P. c. atrosepticum but not in P. c. carotovorum. The biochemical properties, PCR amplification, and sequences of the Pca17AI restriction endonuclease and methyltransferase genes were compared with the prototype EcoRII R-M system genes. Only when DNA isolated from cells of P. c. atrosepticum was used as a template, amplification of a 680 bp homologous to the gene coding EcoRII endonuclease. CONCLUSIONS: Endonuclease Pca17AI, having a relatively low temperature optimum, was identified. PCR amplification revealed that the nucleotide sequence of genes for EcoRII and Pca17AI R-M are different. Dcm methylation was observed in all strains of Pectobacterium and other Erwinia species tested. The sequence of a DNA fragment coding Dcm methylase in P. carotovorum was different from that of Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Pca17AI is the first psychrophilic isoschizomer of EcoRII endonuclease. The presence of specific Dcm methylation in chromosomal DNA isolated from P. carotovorum is described for the first time. A 680 bp PCR product, unique for P. c. atrosepticum strains, could serve as a molecular marker for detection of these bacteria in environmental samples.  相似文献   

6.
7.
In Escherichia coli, cytosine DNA methylation is catalyzed by the DNA cytosine methyltransferase (Dcm) protein and occurs at the second cytosine in the sequence 5'CCWGG3'. Although the presence of cytosine DNA methylation was reported over 35?years ago, the biological role of 5-methylcytosine in E.?coli remains unclear. To gain insight into the role of cytosine DNA methylation in E.?coli, we (1) screened the 72 strains of the ECOR collection and 90 recently isolated environmental samples for the presence of the full-length dcm gene using the polymerase chain reaction; (2) examined the same strains for the presence of 5-methylcytosine at 5'CCWGG3' sites using a restriction enzyme isoschizomer digestion assay; and (3) quantified the levels of 5-methyl-2'-deoxycytidine in selected strains using liquid chromatography tandem mass spectrometry. Dcm-mediated cytosine DNA methylation is conserved in all 162 strains examined, and the level of 5-methylcytosine ranges from 0.86% to 1.30% of the cytosines. We also demonstrate that Dcm reduces the expression of ribosomal protein genes during stationary phase, and this may explain the highly conserved nature of this DNA modification pathway.  相似文献   

8.
9.
BstNI同功酶限制—修饰系统基因的表达检测和定位分析   总被引:1,自引:0,他引:1  
鉴定了E.coli HB101和JM110的部分遗传标记,作为受体菌分别用于BstNI同功酶限制-修饰系统中限制性内切酶(R)基因和甲基化酶(M)基因表达的检测。用外切酶Ⅲ单向删切含R-M基因的DNA片段,获得23个缺失突变亚克隆。通过检测各亚克隆表达的R酶和M酶活性,将R和M基因分别定位在距克隆位点PstI和0.2→1.4kb和1.5→3.3kb范围内。分析表明:该系统属于Ⅱ类限制-修饰系统,两  相似文献   

10.
NEBcutter, version 1.0, is a program available via a web server (http://tools.neb.com/NEBcutter) that will accept an input DNA sequence and produce a comprehensive report of the restriction enzymes that will cleave the sequence. It produces a variety of outputs including restriction enzyme maps, theoretical digests and links into the restriction enzyme database, REBASE (http://www.neb.com/rebase). Importantly, its table of recognition sites is updated daily from REBASE and it marks all sites that are potentially affected by DNA methylation (Dam, Dcm, etc.). Many options exist to choose the enzymes used for digestion, including all known specificities, subsets of those that are commercially available or sets of enzymes that produce compatible termini.  相似文献   

11.
DNA from two regions of the phage M13 genome hybridizes with DNA restriction fragments from genomes of various species including man [15, 20]. As the pattern of hybridization is individual-specific, this phage M13 probe can be used for DNA fingerprinting. We demonstrate here that the regions of many keratin genes coding for glycine-rich parts of C and N end domains are very similar to the phage M13 probe, and this similarity may be responsible for hybridization.  相似文献   

12.
13.
ABSTRACT: BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.  相似文献   

14.
15.
Liu G  Ou HY  Wang T  Li L  Tan H  Zhou X  Rajakumar K  Deng Z  He X 《PLoS genetics》2010,6(12):e1001253
Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.  相似文献   

16.
In the `shotgun' procedure for sequencing DNA, DNA fragments are cloned into a phage M13 vector and sequenced by using a flanking primer. In a variation of this procedure a longer DNA sequence is cloned into M13, the two single-stranded recombinants identified and sequenced by using a set of internal primers prepared by exonuclease III digestion of restriction fragments.  相似文献   

17.
A simple and efficient method for chemical mutagenesis of DNA.   总被引:7,自引:5,他引:2       下载免费PDF全文
A simple and efficient procedure for the generation of random GC to AT transition mutations in a specific DNA segment is described. A restriction fragment is inserted in each orientation into an M13 vector, single-stranded virion DNA from each recombinant phage is treated with methoxylamine, and, after reannealing of the mutagenized strands, a double-stranded restriction fragment is obtained. This methoxylamine-derivatized DNA segment is then joined with linearized M13 RF DNA, competent E. coli is transfected, and mutations are directly identified by sequencing of the phage DNA. Using this technique, single and double nucleotide substitutions were generated at a frequency greater than 50% in a 56-base pair segment of the signal codons of the TEM beta-lactamase.  相似文献   

18.
In Escherichia coli, the very short patch (VSP) repair system is a major pathway for removal of T·G mismatches in Dcm target sequences. In the VSP repair pathway, the very short patch repair (Vsr) endonuclease selectively recognizes a T·G mismatch in Dcm target sequences and hydrolyzes the 5′-phosphate group of the mismatched thymine. The hydrogen exchange NMR studies here revealed that the T5·G18 mismatch in the Dcm target sequence significantly stabilizes own base pair but destabilizes the two neighboring G4·C19 and A6·T17 base pairs compare to other T·G mismatches. These unusual patterns of base pair stability in the Dcm target sequence can explain how the Vsr endonuclease specifically recognizes the mismatched Dcm target sequence and intercalates into the DNA.  相似文献   

19.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

20.
Fourteen deoxyribonucleic acid (DNA) and 10 ribonucleic acid (RNA) methylation mutants were isolated from Escherichia coli K-12 by examining the ability of nucleic acids prepared from clones of unselected mutagenized cells to accept methyl groups from wild-type crude extract. Eleven of the DNA methylation mutants were deficient in 5-methylcytosine (5-MeC) and were designated Dcm. Three DNA methylation mutants were deficient in N(6)-methyladenine (N(6)-MeA) and were designated Dam. Extracts of the mutants were tested for DNA-cytosine:S-adenosylmethionine and DNA-adenine:S-adenosylmethionine methyltransferase activities. With one exception, all of the mutants had reduced or absent activity. A representative Dcm mutation was located at 36 to 37 min and a representative Dam mutation was located in the 60-to 66-min region on the genetic map. The Dcm mutants had no obvious associated phenotypic abnormality. The Dam mutants were defective in their ability to restrict lambda. None of the mutations had the effect of being lethal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号