首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe the construction of an improved, compact protein sequencer with a vertical flow path and continuous flow reactor (CFR). Unique features include a hexagonal valve for six fluid inputs to the CFR, which connects vertically to a transfer valve that allows sample, reagent, and solvent input to a conversion flask (CF). The simplified CF contains only two inputs at the top, one for sample, reagent, and solvent input, and the other a vent. The CF drains from the bottom, connecting to a switching valve which allows either delivery to waste or to an on-line HPLC for the analysis of phenylthiohydantoin amino acid derivatives. Approximately 90% of the sample is analyzed by use of a sonic flow detector. The overall vertical flow path of the sequencer is about 16 cm. The size of the instrument (25 w x 38 x 44 d cm) is smaller than that of commercially available sequencers or HPLC systems. The performance of the instrument includes reduced background peaks and high-sensitivity sequence analysis at the 5-10 pmol level. The simplified sequencer is more economical and portable than conventional sequencers.  相似文献   

2.
A novel apparatus for performing manual gas-phase Edman chemistry on protein and peptide samples is described. Edman chemistry is performed in 6 to 10 Teflon continuous flow reactors (CFR), previously described by J.E. Shively et al. (1987) Anal. Biochem. 163, 517-529). The CFRs are packed with 10-15 mg of Polybrene-coated spherical silica (Porasil B, Waters Associates). The gas-phase coupling reagent and cleavage reagent are 5% aqueous triethylamine and anhydrous trifluoroacetic acid, respectively, delivered by a stream of argon gas. The delivery of the gas-phase reagents is manually controlled with Hamilton 3-way valves and 2-way valves, and that of the solvents, ethyl acetate and butyl chloride, by syringe pipetting. The average cycle time is 15-20 min for 6 to 10 samples run simultaneously. Conversion of the anilinothiazolinone to phenylthiohydantoin (PTH) amino acid derivatives is accomplished manually with 25% aqueous trifluoroacetic acid. The PTH amino acids are analyzed by reversed-phase HPLC using an autosampler for handling multiple samples. Excellent results were obtained in the 100-200 pmol range. Protein samples can be sequenced from 15-20 cycles, and peptide samples usually to the COOH terminus. Initial yields ranged from 30 to 60% and repetitive yields ranged from 90 to 96%. The sample washout and size of background peaks are significantly reduced, compared to older methods of manual sequence analysis. The yields and background signal to noise are comparable to automated gas-phase Edman chemistry. The improved manual Edman described represents a low cost alternative to automated sequence analysis, and has the advantage being able to process multiple samples simultaneously.  相似文献   

3.
The sequence of the tryptic peptides of three major species of human leukocyte interferon was determined by microsequencing procedures. The peptides were aligned by comparison with the amino acid sequences predicted by the DNA sequences of recombinants containing leukocyte interferon-coding inserts. In addition, extended NH2-terminal amino acid sequences of two human leukocyte interferons produced in Escherichia coli by recombinant DNA methodology are also reported. This report demonstrates application of microsequencing methodology to low nanomole and subnanomole amounts of proteins and peptides of biological interest.  相似文献   

4.
A reinvestigation of the isothiocyanate-based chemistry for cyclic degradations of peptides and proteins revealed that the reagent trimethylsilylisothiocyanate (TMS-ITC) gives superior results in terms of coupling efficiency and lack of complicating side reactions. Acetic anhydride (10 min at various temperatures) was used to activate the carboxyl terminus, and 6 N HCl (30 min at room temperature) was used for cleavage as originally described by G.R. Stark (Biochemistry 8, 4735, 1968). Reaction conditions for efficient coupling were explored using subtractive chemistry on bradykinin, a nonapeptide, and separation of the reaction products by reverse-phase high-performance liquid chromatography. The products were analyzed by fast atom bombardment-mass spectrometry and shown to be the N-acetylated starting material and the N-acetylated des-Arg9 derivative of bradykinin. The pseudo-first-order rate constants measured at 50, 70, and 90 degrees C were 5.6 X 10(-5), 5.1 X 10(-4), and 8.6 X 10(-4) s-1, respectively. In order to obtain complete couplings within 30-40 min at 50 degrees C, the effect of pyridine catalysis was studied. The addition of 0.225 M pyridine resulted in roughly doubling the rates at 50 and 70 degrees C. In the case of bradykinin, the reaction with TMS-ITC in the presence of the pyridine catalyst at 50 degrees C was complete in 15 min. In order to apply this methodology to the analysis of proteins, the thiohydantoin derivatives of amino acids were synthesized and separated by reverse-phase HPLC. The derivatives were also characterized by mass spectrometry. The above reaction conditions were tested on 3 nmol of sperm whale apomyoglobin for three cycles of degradation. The sample was first coupled to p-phenylene diisothiocyanate-derivatized aminopropyl glass with a 90% yield. The approximate initial yield of glycine at cycle one was 30%. The first three cycles corresponded exactly to the predicted carboxy-terminal sequence of myoglobin. These results demonstrate the feasibility of a new Stark reagent for automated carboxy-terminal chemistry.  相似文献   

5.
We have quantitatively examined the various parameters affecting the electrotransfer and sequence analysis of proteins from sodium dodecyl sulfate (SDS) gels to derivatized glass fiber paper or to polyvinyldifluoride (PVDF) membranes. Transfer yields in the range of 90-95% can be obtained for proteins in the molecular weight range of 10-90 kDa for transfer from 12% SDS gels to glass fiber paper derivatized with either QAPS (N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride) or APS (aminopropyltriethoxysilane). In order to achieve these yields, it was necessary to modify the conditions described by R. Aebersold et al. (J. Biol. Chem. 261, 4229-4238, 1986). We activated the glass fiber paper with dilute ammonia water and derivatized the activated glass fiber paper with QAPS and APS in anhydrous solvents which were allowed to slowly absorb moisture during the derivatization process. The transfer yield varied with transfer time versus molecular weight of the protein for a given percentage gel. Shorter transfer times and higher yields were obtained for higher molecular weight proteins on 8% gels. Lower molecular weight protein gave higher yields from 12% gels under similar transfer conditions. Sequencing yields of the transferred proteins were in the range of 40-80%, but a number of background peaks were observed on HPLC analysis of the phenylthiohydantoin amino acid derivatives. Transfer yields in the range of 85-95% were observed for similar experiments with PVDF membranes. In order to achieve these yields, it was necessary to modify the conditions described by P. Matsudaira (J. Biol. Chem. 262, 10035-10038, 1987). A lower voltage and longer transfer times gave higher transfer yields. In order to achieve consistently high transfer yields, it was also necessary to precoat the PVDF membranes with Polybrene. The PVDF membranes were cut into approximately 1-mm-wide strips and inserted into a continuous flow reactor (J. E. Shively, P. Miller, and M. Ronk, Anal. Biochem. 163, 517-525, 1987) for sequence analysis. Overall yields of samples loaded onto gels, electrotransferred to Polybrene-coated PVDF membranes, and sequenced ranged from 50-60% for beta-lactoglobin (10-50 pmol loaded onto SDS gels) to 20-30% for bovine serum albumin and soybean trypsin inhibitor (50 pmol loaded onto SDS gels). A comparison of the two methods shows clear advantages for the PVDF membranes over the derivatized glass fiber paper, including the ability to directly sequence the Coomassie blue-stained PVDF membranes, and the lower backgrounds observed on subsequent sequence analysis.  相似文献   

6.
Reverse-phase supports for the separation of peptides and proteins are compared in two high-performance liquid chromatographic systems. One uses a trifluoroacetic acid-acetonitrile solvent system with a 206-nm detector, and the other uses pyridine-formate or pyridine-acetate and 1-propanol with a postcolumn fluorescence detector. Each system was examined with RP8, RP18, and alkylphenyl supports. In most applications, the trifluoroacetic acid-acetonitrile solvent system used in conjunction with an alkylphenyl column performed best. The use of this system for the preparation of low-microgram amounts of samples for microsequence analysis is illustrated.  相似文献   

7.
Levels of contaminants in the parts-per-billion range can adversely affect amino acid microsequence analysis (low-nanomole to subnanomole range) in two ways; (a) contaminants in solvents used in the purification of proteins and peptides can derivatize reactive amino acids to form unusual products or react with free α-NH2 groups to effectively prevent sequence analysis, and (b) contaminants in the reagents and solvents used in Edman chemistry can give spurious peaks on HPLC analysis of amino acid phenythiohydantoin derivatives or react with the phenylthiocarbamylpeptidyl derivatives to give lower initial and repetitive yields of the subsequent phenylthiohydantoin derivatives. Practical examples of these problems and their solutions are described. With proper care in the preparation of solvents and reagents for sample purification and Edman chemistry, microsequence analysis in the low-nanomole to subnanomole range can be made routine.  相似文献   

8.
We have designed and tested a continuous flow reactor (CFR) for microsequence analysis of peptides and proteins. The CFR forms the site for immobilization of the peptide or protein substrate and automated Edman chemistry. The CFR was constructed from 0.125-in.-o.d., 0.0625-in.-i.d. Teflon tubing (length 2-3 cm) containing 5-10 mg of Polybrene-coated, spherical, porous silica (100-200-micron particle size). The silica is retained in the CFR with porous Teflon filters (Zitex) at the bed bottom and optionally at the bed top. The i.d. of the CFR was selected for a tight press fit when 0.0625-in.-o.d. Teflon lines are inserted at the top and bottom of the CFR. This design allows the replacement of the existing cartridge/glass fiber disk found in conventional microsequencers with a CFR with a minimal amount of changes. The advantages of the CFR over the previous design include a lower background or noise level and no need to precycle Polybrene before sample application, and the entire unit is inexpensive and therefore disposable. We believe that the decrease in noise, especially the decrease in the commonly observed diphenylthiourea peak, is due to the more direct flow path and relative absence of unswept area in the CFR. Several standard peptides and proteins were sequenced in the CFR to demonstrate the improved results. A direct comparison to the cartridge/glass fiber disk design demonstrated less background and higher initial and repetitive yields for the CFR. An additional advantage is the ability to directly concentrate samples on CFRs containing reverse-phase packing. We have successfully concentrated 1.0-ml samples (200 pmol) onto 5 mg of octyldecylsilyl-derivatized silica in yields of 95-100%. The resulting samples were microsequenced after addition of Polybrene-coated silica to the CFR with high initial and repetitive yields. This methodology promises to improve sample handling and microsequence analysis of low picomole amounts of peptides and proteins.  相似文献   

9.
10.
The influence of different types of polyvinylidene difluoride (PVDF) membranes on gas phase sequence performance has been evaluated. These PVDF membranes have been classified as either high retention (Trans-Blot and ProBlott) or low retention membranes (Immobilon-P) based on their ability to bind proteins during electroblotting from gels. Initial yields, repetitive yields, and extraction efficiency of the anilinothiazolinone amino acid derivatives have been compared for several standard proteins that have been either electroblotted or loaded onto PVDF membranes by direct adsorption. These results show that the major differences in initial sequence yields between membranes arise from differences in the amount of protein actually transferred to the membrane rather than sequencer-related factors. In contrast to several previous observations from other laboratories, more tightly bound proteins do not sequence with lower initial yields and initial yields are not affected by the ratio of surface area to protein. The stronger binding on high retention PVDF membranes does not adversely affect recoveries of difficult to extract, or very hydrophobic, amino acid derivatives. Several amino acids, especially tryptophan, are actually recovered in dramatically higher yield on high retention membranes compared with either Immobilon or glass filters. At the same time, the protein and peptide binding properties of high retention membranes will frequently improve the repetitive yield by minimizing sample extraction during the sequencer cycle. Stronger protein binding together with improved electroblotting yields offer substantially improved sequence performance when high retention PVDF membranes are used.  相似文献   

11.
12.
A comparison of the separation of the common phenylthiohydantoin derivatives of amino acids on DuPont octadecylsilane with that obtained with Ultrasphere octadecylsilane supports is given together with the effect of acetate, phosphate, and trifluoroacetate buffers in the elution solvents. An important change in performance for two different batches of DuPont Zorbax octadecylsilane was noted. The use of combined trifluoroacetate/acetate buffer with Ultrasphere octadecylsilane gives optimal separations and peak sharpness. Practical examples of the performance of this system in low-nanomole NH2-terminal sequence analysis are discussed with emphasis on identification of unusual amino acid derivatives and interfering background peaks.  相似文献   

13.
Electroblotting method employing a semidry blotting apparatus for the subsequent protein microsequence analysis (Hirano, 1987) was improved. This method is convenient and allows rapid and efficient transfer of the proteins from a polyacrylamide gel (1 mm thick) onto the Polybrene-coated glass-fiber sheet or polyvinylidene difluoride membrane filter in only 20 min. The electroblotted proteins could be sequenced directly with the gas-phase protein sequencer at a 20-pmole level. This method was applied to the sequence analysis of winged bean seed proteins. A portion of the crude extracts from only one-twentieth of a seed of the winged bean was separated by two-dimensional polyacrylamide gel electrophoresis and electroblotted, and the N-terminal amino acid sequences of the blotted proteins were analyzed. The sequences of about 60% of the blotted major proteins, including nine Kunitz trypsin inhibitor-like proteins with heterogeneity in the N-terminal sequences, a protein that has a homologous sequence to the leghaemoglobin, nitrogen-fixing root nodule-specific protein, and a soybean basic 7S globulin-like protein could be easily identified.  相似文献   

14.
《Peptides》1986,7(3):481-489
The chromatographic behavior of biologically relevant peptides and proteins in the molecular weight range between 200 and 200,000 dalton units were studied on a size exclusion matrix column consisting of an aqueous compatible dihydroxyalkyl bonded silica support. The mechanism of separation appears to be dependent on hydrodynamic radius, hydrophobic and ionic interactions. Support for this contention is based on the chromatographic properties of these peptides and proteins at different mobile phase ionic strengths and pH, oxidation state of amino acid residues and total hydrophobicity of the peptide or protein. This column is also capable of separating native angiotensin-I from its iodinated congener. Recoveries of proteins and peptides from this column ranged between 70–100%. Unlike typical reverse phase separations, this modified silica chromatographic media allows for an alternative technique employing aqueous eluents for rapid separation/isolation and purification of peptides and proteins from natural or synthetic sources.  相似文献   

15.
The most effective protein purification method of low picomole amounts for sequence analysis involves polyacrylamide gel electrophoresis followed by electroblotting to polyvinylidene difluoride (PVDF) membranes. Since a critical factor in this procedure is the protein recovery at the blotting step, different types of PVDF membranes were systematically evaluated for their ability to bind proteins during electrotransfer. Differences in electroblotting recoveries occurred between types of PVDF membranes for some proteins. Some variability persisted even when optimized electroblotting procedures were used which reduce the sodium dodecyl sulfate (SDS) concentration in the gel and improve protein-PVDF binding. The membranes which were evaluated could be grouped as either "high retention" membranes (ProBlott, Trans-Blot, and Immobilon-PSQ) or "low retention" membranes (Immobilon-P and Westran). The high retention membranes showed higher protein recoveries under most conditions tested, especially for small proteins or peptides. These high retention membranes were also less sensitive to the exact electroblotting conditions, especially those factors which affect the amount of SDS present during either electrotransfer or direct adsorption from protein solutions. High retention PVDF membranes are therefore preferred in most cases for optimal protein or peptide recovery prior to direct sequence analysis. In contrast, low retention membranes are preferred for procedures where subsequent extraction of the proteins from the membranes is required. Even under identical conditions, substantial protein-to-protein variation for both adsorption and subsequent extraction is routinely observed for both groups of membranes, indicating that the nature of protein-PVDF interactions is more complex than simple hydrophobic interactions.  相似文献   

16.
DNA-binding proteins in eubacteria, such as Escherichia coli NS1 and NS2, are generally small basic molecules. In contrast, the archaebacterium Sulfolobus acidocaldarius contains three groups of DNA-binding proteins which have molecular masses of 7, 8, and 10 kDa. In the first group, five proteins (7a-7e) have been identified, while in the second and third group only two proteins each are present, denoted 8a and 8b and 10a and 10b, respectively. In this paper, we present the primary structures of proteins 7a, 7b, and 7e from the first group. All three proteins contain lysyl residues which are monomethylated to different extents. The modified lysines are found in the NH2-terminal regions of all 7-kDa proteins and in the COOH-terminal part of protein 7e. The sequences of the 7-kDa group are highly similar to each other. All of these macromolecules have been shown to interact specifically with DNA. Protein 7e of the 7-kDa group shows the tightest binding to DNA.  相似文献   

17.
The novel sulfotransferase (M.W. 315 kDa) obtained from Eubacterium A-44 catalyzed the sulfation of tyrosine residues of peptides and proteins such as kyotorphin, enkephalin, cholecystokinin-8 (non-sulfated form), trypsin inhibitor and insulin. Also, the enzyme sulfated tyrosine residues of protein fractions purified from Eubacterium A-44.  相似文献   

18.
The normal modes have been calculated for β-turns of types I, II, III, I′, II′, and III′. The complete set of frequencies is given for the first three structures; only the amide I, II, and III modes are given for the latter three structures. Calculations have been done for structures with standard dihedral angles, as well as for structures whose dihedral angles differ from these by amounts found in protein structures. The force field was that refined in our previous work on polypeptides. Transition dipole coupling was included, and is crucial to predicting frequency splittings in the amide I and amide II modes. The results show that in the amide I region, β-turn frequencies can overlap with those of the α-helix and β-sheet structures, and therefore caution must be exercised in the interpretation of protein bands in this region. The amide III modes of β-turns are predicted at significantly higher frequencies than those of α-helix and β-sheet structures, and this region therefore provides the best possibility of identifying β-turn structures. Amide V frequencies of β-turns may also be distinctive for such structures.  相似文献   

19.
A new method of determination of molecular mass of proteins and peptides has been developed, basing on the microcolumn exclusion chromatography on non-modified silica sorbents in trifluoroacetic acid. It is shown that in this eluent the proteins and peptides adopt the random-coil conformation and are not hydrolyzed for three days at room temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号