首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Escherichia coli K12 mutants defective in 3-methyladenine-DNA glycosylase have been isolated following mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine. The mutants, which are of independent origin and have been designated tag-1 and tag-2, contain greatly reduced amounts of 3-methyladenine-DNA glycosylase activity in cell-free extracts. The defect in the tag-1 strain is observed at 43 °C but not at 30 °C, and a partially purified enzyme from this strain is unusually heat-labile, indicating that the defect in the tag-1 strain is due to a mutation in the structural gene for 3-methyladenine-DNA glycosylase.We have shown that 3-methyladenine-DNA glycosylase is responsible for the rapid removal of 3-methyladenine from the DNA of E. coli cells treated with monofunctional alkylating agents. The active release of this base is greatly impaired in the mutant strains. Both tag mutant strains are abnormally sensitive to killing by monofunctional alkylating agents and are defective in the host cell reactivation of methyl methanesulphonate-treated bacteriophage A. The tag mutation does not confer an increased sensitivity to ultraviolet or X-irradiation, and host cell reactivation of irradiated λ is normal in these strains. Further, there was no increase in the rate of spontaneous mutation in a tag strain.Three-factor transductional crosses with nalA and nrdA have shown that the tag-2 mutation is located at 47.2 minutes on the map of the E. coli K12 chromosome. In the mapping experiments, the tag-1 mutation behaved differently and appeared to be located at 43 to 46 minutes, in a closely situated but non-adjacent gene. Possible implications of the non-identity of the tag-1 and tag-2 mutations are discussed.  相似文献   

2.
We constructed a recombinant plasmid carrying a gene that suppresses tag mutation. To overproduce its gene product, a 0.8-kilobase DNA fragment which carries the gene was placed under the control of the lac promoter in pUC8. 3-Methyladenine-DNA glycosylase activity in cells carrying such plasmids (pCY5) was 450-fold higher than that of wild type strain, on exposure to isopropyl-beta-D-thiogalactopyranoside. From an extract of such cells, the enzyme was purified to apparent physical homogeneity, and the amino acid composition and the amino-terminal amino acid sequence of the enzyme were determined. The data were in accord with nucleotide sequence of the gene, determined by the dideoxy method. It was deduced that 3-methyladenine-DNA glycosylase I comprises 187 amino acids and its molecular weight is 21,100, consistent with the value estimated from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein. Only 3-methyladenine was excised from methylated DNA by the purified glycosylase. These results show that the tag is the structural gene for 3-methyladenine-DNA glycosylase I.  相似文献   

3.
Single crystals of 3-methyladenine-DNA glycosylase II produced from the alkA gene of Escherichia coli have been obtained by the method of vapour diffusion with polyethylene glycol 6000 as precipitant at pH 8.5. The crystals belong to the monoclinic space group C2, with a = 58.6 A, b = 76.8 A, c = 62.2 A, beta = 110.3 degrees. They contain one molecule per asymmetric unit and diffract to 2.7 A resolution.  相似文献   

4.
J Pierre  J Laval 《Gene》1986,43(1-2):139-146
The 3-methyladenine-DNA glycosylase (m3ADG) excises 3-methyladenine (m3A) residues formed in DNA after treatment with alkylating agents. In Escherichia coli, the repair of this type of damage depends on the products of the genes tagA and/or alkA, which code for m3ADG I (20 kDa) and II (30 kDa), respectively. The tagA- and alkA--single mutants are sensitive to alkylating agents, the double mutant much more so. We have cloned two genes of Micrococcus luteus that can partly substitute the function of the E. coli tagA- and alkA- genes. An M. luteus genome bank was made by shotgun cloning of EcoRI + BamHI-digested DNA into pBR322. Two hybrid plasmids were identified that confer methylmethane sulfonate (MMS) resistance to the tagA- ada+ mutant and a capacity to reactivate MMS-treated bacteriophage lambda. Each hybrid plasmid directed the synthesis of 21-kDa m3ADG in E. coli tagA- ada-, which were not inhibited by 4 mM m3A. However, the restriction maps of the two cloned genes were different, and they showed no sequence homology as judged by the lack of cross hybridization.  相似文献   

5.
Previous studies have related DNA modification by the haloethylnitrosoureas to their antitumor activity. Repair of this damage, particularly by O6-alkylguanine-DNA alkyltransferase, has been linked to tumor resistance by several previous investigations. We report here that E. coli 3-methyladenine-DNA glycosylase II can also remove several of the DNA modifications caused by the haloethylnitrosoureas. 7-Chloroethylguanine, 7-hydroxyethylguanine, and diguan-7-ylethane are all released into the supernatant from DNA modified by N-[2-chloroethyl-1,2-14C]-N'-cyclohexyl-N-nitrosourea. Release of diguan-7-ylethane is of particular interest since this entity evidently represents a DNA intrastrand cross-link. If a similar activity is present in mammalian cells, it might be an important source of resistance to the therapeutic action of the haloethylnitrosoureas.  相似文献   

6.
A human cDNA coding sequence for a 3-methyladenine-DNA glycosylase was expressed in Escherichia coli. In addition to the full-length 3-methyladenine-DNA glycosylase coding sequence, two other sequences (resulting from differential RNA splicing and the truncated anpg cDNA) derived from that sequence were also expressed. All three proteins were purified to physical homogeneity and their N-terminal amino acid sequences are identical to those predicted by the nucleic acid sequences. The full-length protein has 293 amino acids coding for a protein with a molecular mass of 32 kDa. Polyclonal antibodies against one of the proteins react with the other two proteins, and a murine 3-methyladenine-DNA glycosylase, but not with several other E. coli DNA repair proteins. All three proteins excise 3-methyl-adenine, 7-methylguanine, and 3-methylguanine as well as ethylated bases from DNA. The activities of the proteins with respect to ionic strength (optimum 100 mM KCl), pH (optimum 7.6), and kinetics for 3-methyladenine and 7-methylguanine excision (average values: 3-methyladenine: Km 9 nM and kcat 10 min-1, 7-methylguanine: Km 29 nM and kcat 0.38 min-1) are comparable. In contrast to these results, however, the thermal stability of the full-length and splicing variant proteins at 50 degrees C is less than that of the truncated protein.  相似文献   

7.
The 3-methyladenine-DNA glycosylase from calf thymus has been purified and characterized. Two species of Mr = 42,000 and 27,000 +/- 5% and Stokes radius of 27.5 and 22.4 A, respectively, were found. Only the lower molecular weight species were present in the nucleus; it was bound to chromatin and could be dissociated in the presence of 0.25 M KCl. The enzymatic properties of the two species appeared to be identical. Both enzyme species released 3-methyladenine, 7-methylguanine, and 3-methylguanine, listed in the order of decreasing activity. The chromatin-associated enzyme was purified to apparent homogeneity and found to be a basic protein having a pI greater than 9. It was completely inhibited by p-hydroxymercuribenzoate, but this inhibition could be fully reversed by addition of excess 2-mercaptoethanol. Kinetic studies, heat inactivation, and inhibition experiments demonstrated that the 3-methyladenine and 7-methylguanine releasing activities were located on the same protein molecule. The enzymes showed no activity on methylated single-stranded DNA. No product inhibition was observed for any of the enzyme species, and the enzyme activity was optimal when the incubation was performed in the presence of 50 mM NaCl or KCl at pH values between 8 and 9.  相似文献   

8.
The induction of SOS and adaptive responses by alkylating agents was studied in Escherichia coli mutants tagA and alkA deficient in 3-methyladenine-DNA glycosylase activities. The SOS response was measured using an sfiA::lacZ operon fusion. The sfiA operon, in the double mutant tagA alkA, is induced at 5-50-fold lower concentrations of all tested methylating and ethylating compounds, as compared to the wild-type strain. In all cases, the tagA mutation, which inactivates the constitutive and specific 3-alkyladenine-DNA glycosylase I (TagI), sensitizes the strain to the SOS response. The sensitization effect of alkA mutation, which inactivates the inducible 3-alkyladenine-DNA glycosylase II (TagII), is observed under conditions which allow the induction of the adaptive response. We conclude that the persistence of 3-methyladenine and 3-ethyladenine residues in DNA most likely leads to the induction of the SOS functions. In contrast, the adaptive response, evaluated by O6-methylguanine-DNA methyltransferase activity in cell extracts, was not affected by either tagA or alkA mutations. The results suggest that the SOS and adaptive responses use different alkylation products as an inducing "signal". However, adaptation protein TagII inhibits the induction of the SOS response to some extent, due to its action at the level of signal production. Finally, we provide conditions to improve short-term bacterial tests for the detection of genotoxic alkylating agents.  相似文献   

9.
T P Brent 《Biochemistry》1979,18(5):911-916
A DNA glycosylase was purified about 30-fold from cultured human lymphoblasts (CCRF-CEM line) and was found to cleave 3-methyladenine from DNA alkylated with methyl methanesulfonate. The enzyme did not promote the release of 1-methyladenine, 7-methyladenine, or 7-methylguanine from DNA nor did it act on denatured methylated DNA. It produced apurinic sites in DNA alkylated with N-methyl-N-nitrosourea and ethyl methane-sulfonate as well as methyl methanesulfonate but not in untreated DNA or in DNA alkylated with nitrogen mustard or irradiated with ultraviolet light or X-rays. The glycosylase was free of detectable endonuclease activity in experiments with untreated DNA or DNA exposed to ultraviolet light; low levels of endonuclease activity, obtained when X-irradiated, alkylated, or depurinated DNA was the substrate, were attributed to contaminant apurinic endonuclease activity. This 3-methyladenine-DNA glycosylase has an estimated molecular weight of 34,000, is not dependent on divalent metal ions, and shows optimal activity at pH 7.5--8.5.  相似文献   

10.
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.  相似文献   

11.
Human alkyladenine-DNA glycosylase (AAG) catalyzes the excision of a broad range of modified bases, protecting the genome from many types of alkylative and oxidative DNA damage. We have investigated how AAG discriminates against normal DNA bases, while accommodating a structurally diverse set of lesioned bases, by measuring the rates of AAG-catalyzed (k(st)) and spontaneous N-glycosidic bond hydrolysis (k(non)) for damaged and undamaged DNA oligonucleotides. The rate enhancements for excision of different bases reveal that AAG is most adept at excising the deaminated lesion hypoxanthine (k(st)/k(non) = 10(8)), suggesting that enzymatic activity may have evolved in response to this lesion. Comparisons of the rate enhancements for excision of normal and modified purine nucleobases provide evidence that AAG excludes the normal purines via steric clashes with the exocyclic amino groups of adenine and guanine. However, methylated purines are more chemically labile, and only modest rate enhancements are required for their efficient excision. Base flipping also contributes to specificity as destabilized mismatched base pairs are better substrates than stable Watson-Crick pairs, and many of the lesions recognized by AAG are compromised in their ability to base pair. These findings suggest that AAG reconciles a broad substrate tolerance with the biological imperative to avoid normal DNA by excluding normal bases from the active site rather than by specifically recognizing each lesion.  相似文献   

12.
Cultured human lymphoblasts contain a component that stimulates 3-methyladenine-DNA glycosylase, resulting in increased removal of 3-methyladenine from alkylated DNA. Increased release of other methylated bases was not detected by high-pressure liquid chromatography. Separation of the component and 3-methyladenine-DNA glycosylase during enzyme purification results in a loss of glycosylase activity. Stimulation of glycosylase activity can be demonstrated by recombination of the separated component with a partially purified lymphoblast enzyme fraction.  相似文献   

13.
Hypoxanthine-DNA glycosylase from Escherichia coli was partially purified by ammonium sulfate fractionation and by chromatography on Sephacryl S-200, DEAE-cellulose, and phosphocellulose P-11 columns. Analysis of the enzymatic reaction products was carried out on a minicolumn of DEAE-cellulose and/or by paper chromatography, by following the release of the free base [3H]hypoxanthine from [3H]dIMP-containing phi X174 DNA. In native conditions, the enzyme has a molecular mass of 60 +/- 4 kDa, as determined by gel filtration on Sephadex G-150 and Sephacryl S-200 columns. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed a major polypeptide band of an apparent molecular mass of 56 kDa, and glycerol gradient centrifugation indicated a sedimentation coefficient of 4.0 S. Hypoxanthine-DNA glycosylase from E. coli has an obligatory requirement for Mg2+ and is totally inhibited in the presence of EDTA. Co2+ can only partially replace Mg2+. The enzyme is inhibited by hypoxanthine which at 4 mM causes 85% inhibition. The optimal pH range of the enzymatic activity is 5.5-7.8, and the apparent Km value is 2.5 x 10(-7) M.  相似文献   

14.
15.
Further purification of a human placental 3-methyladenine-DNA glycosylase by phosphocellulose column chromatography yielded a 6000-fold increase in specific activity with greater than 5% recovery. Although 3-methyladenine was the predominant base released from double-stranded methylated DNA by this enzyme, minor releasing activities for 7-methylguanine and 3-methylguanine were also observed. During purification, the three DNA glycosylase activities consistently copurified with constant ratios of specific activity. Moreover, all the activities were heat-inactivated at 50 degrees C at the same rate, required double-stranded methylated DNA as substrate, were inhibited by spermine and spermidine, and were not subject to product inhibition. These data strengthen the likelihood that the three activities are associated with a single DNA glycosylase.  相似文献   

16.
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.  相似文献   

17.
Purified T7 phage, treated with methyl methanesulfonate, was assayed on four Escherichia coli K12 host cells: (1) AB1157, wild-type; (2) PK432-1, lacking 3-methyladenine-DNA glycosylase (tag); (3) NH5016, lacking apurinic endonuclease VI (xthA); (4) p3478, lacking DNA polymerase I (polA), the latter three strains being deficient in enzymes of the base excision repair pathway. For inactivation measured immediately after alkylation, phage survival was lowest on strains PK432-1 and p3478; for delayed inactivation, measured after partial depurination of alkylated phage, survival was much lower on strain p3478 than on PK432-1. These results demonstrate the important role played by 3-methyladenine-DNA glycosylase in the survival of methylated T7 phage. Quantitative analysis of the data, using the results of Verly et al. (Verly, W.G., Crine, P., Bannon, P. and Forget, A. (1974) Biochim. Biophys. Acta 349, 204–213) to correlate the dose with the number of methyl groups introduced into phage DNA, revealed that 5–10 3-methyladenine residues per T7 DNA constituted an inactivation hit for the tag mutant. Thus, 3-methyladenine may be as toxic a lesion as an apurinic site.  相似文献   

18.
Further purification of a human placental 3-methyladenine-DNA glycosylase by phosphocellulose column chromatography yielded a 6000-fold increase in specific activity with greater than 5% recovery. Although 3-methyladenine was the predominant base released from double-stranded methylated DNA by this enzyme, minor releasing activities for 7-methylguanine and 3-methylguanine were also observed. During purification, the three DNA glycosylase activities consistently copurified with constant ratios of specific activity. Moreover, all the activities were heat-inactivated at 50°C at the same rate, required double-stranded methylated DNA as substrate, were inhibited by spermine and spermidine, and were not subject to product inhibition. These data strengthen the likelihood that the three activities are associated with a single DNA glycosylase.  相似文献   

19.
Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase.   总被引:27,自引:14,他引:13       下载免费PDF全文
A new assay specific for uracil-DNA glycosylase is described, Escherichia coli mutants partially and totally deficient in uracil-DNA glycosylase activity have been isolated by using this assay in mass-screening procedures. These have been designated ung mutants. The ung gene maps between tyrA and nadB on the E. coli chromosome. T4 phage containing uracil in their DNA grow on the most glycosylase-deficient hosts but are unable to grow on wild-type bacteria. This provides a simple spot test for the ung genotype. The ung mutants show slightly higher rates of spontaneous mutation to antibiotic resistance. Taken together, these results suggest a central role for uracil-DNA glycosylase in the initiation of an excision repair pathway for the exclusion of uracil from DNA.  相似文献   

20.
Human alkyladenine glycosylase (AAG) and Escherichia coli 3-methyladenine glycosylase (AlkA) are base excision repair glycosylases that recognize and excise a variety of alkylated bases from DNA. The crystal structures of these enzymes have provided insight into their substrate specificity and mechanisms of catalysis. Both enzymes utilize DNA bending and base-flipping mechanisms to expose and bind substrate bases. Crystal structures of AAG complexed to DNA suggest that the enzyme selects substrate bases through a combination of hydrogen bonding and the steric constraints of the active site, and that the enzyme activates a water molecule for an in-line backside attack of the N-glycosylic bond. In contrast to AAG, the structure of the AlkA-DNA complex suggests that AlkA substrate recognition and catalytic specificity are intimately integrated in a S(N)1 type mechanism in which the catalytic Asp238 directly promotes the release of modified bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号