共查询到20条相似文献,搜索用时 0 毫秒
1.
Shamraĭ SN 《Zhurnal obshche? biologii》2003,64(3):195-214
Remarkable progress is achieved now in comprehension of mechanisms that determine functioning of genes responsible for plants' phytopathogenic resistance (genes R). Cloning of great number of Monocotyledones and Dicotyledones resistance genes show that most of proteins coded by these genes have conserved amino-acid motives, which show high homology to amino-acid motives of proteins with well-designated function. Common structures for most proteins produced by genes R include nucleotide-blinding site (NBS), leucine-rich repeat (LRR), site containing homology with the cytoplasmic domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor (TIR), coiled-coil structure (CC), transmembrane domain (TM), and serine/threonine proteinkinase domain (PK). They are combined within the basic classes of resistance genes proteins as follows: TIR-NBS-LRR, CC-NBS-LLRR, NBS-LRR, PK, TM-CC, LRR-TM, LRR-TM-PK. The domains of proteins produced by plant resistance genes cause specific recognition of avirulence genes products and activate signaling cascade, which gives rise to resistance reaction. Some classes of plant resistance genes probably have the same evolutionary origin as the genes that control the innate immunity of ancient animals. The evolution of plant R genes proceeds primarily by duplication and equal or unequal meiotic recombination. The research on genes R functioning besides its theoretical value is a matter of considerable practical interest for construction of plant genotypes resistant against harmful organisms. The progress in comprehension of mechanisms responsible for specificity of avirulence determinants in phytopathogenic organisms recognition makes possible the creation of artificial resistance genes. 相似文献
2.
3.
Massimo Di Giulio 《Journal of molecular evolution》1989,29(3):191-201
In this paper, I define a measure of the relative position of each amino acid in the genetic code by means of a 21-dimensional vector describing its potential for mutation, in a single step, to each of the other amino acids, or to a chain termination codon. This measure allows us to make a systematic investigation of the type and number of the physicochemical properties of the amino acids that were involved in evolution. The polar character and size of amino acids are identified in this analysis as properties that played a leading role in the evolutionary history of the genetic code. The application of cluster analysis and discriminant analysis reveals the characteristics of the structural organization of the genetic code. Finally, I suggest the existence of a relationship between the molecular weight of the amino acids and the number of synonymous codons. 相似文献
4.
Recently, increasing interest has been directed to the study of metallothioneins (MTs), which are small proteins that are able to bind metal ions. The induction of MT synthesis after exposure to metal or other environmental contaminants in a large number of aquatic invertebrates makes these proteins good biomarkers in water monitoring programs. Within bivalves, the species Mytilus galloprovincialis and Mytilus edulis represent model organisms for these types of studies, as well as for molecular studies regarding the expression and characterization of MT encoding genes. In the present paper, we focused on the genomic characterization, evolutionary, and tissue-expression analyses of the MT-10, MT-10 Intronless, and MT-20 genes in M. galloprovincialis. The comparison of the genomic sequences showed the presence of long nucleotide stretches within the introns of the MT genes that are conserved between M. galloprovincialis and M. edulis. These non-coding conserved sequences may contain regulatory motifs. Real-Time RT-PCR experiments revealed that, at the basal conditions, the MT-10 and MT-10 Intronless genes are expressed at levels considerably higher than the MT-20 gene, mainly in the digestive gland and gill tissue. The strong induction of the MT-20 gene expression detected in a field-collected sample is associated with the up-regulation of both the MT-10 and MT-10 Intronless genes. Evolutionary analysis revealed signals of localized positive selection that, together with the tissue-expression data, support a possible functional diversification between the MTs encoded by the MT-10 and MT-10 Intronless genes. 相似文献
5.
6.
Understanding why genes evolve at different rates is fundamental to evolutionary thinking. In species of the budding yeast, the rate at which genes diverge in expression correlates with the organization of their promoter nucleosomes: genes lacking a nucleosome-free region (denoted OPN for "Occupied Proximal Nucleosomes") vary widely between the species, while the expression of those containing NFR (denoted DPN for "Depleted Proximal Nucleosomes") remains largely conserved. To examine if early evolutionary dynamics contributes to this difference in divergence, we artificially selected for high expression of GFP-fused proteins. Surprisingly, selection was equally successful for OPN and DPN genes, with -80% of genes in each group stably increasing in expression by a similar amount. Notably, the two groups adapted by distinct mechanisms: DPN-selected strains duplicated large genomic regions, while OPN-selected strains favored trans mutations not involving duplications. When selection was removed, DPN (but not OPN) genes reverted rapidly to wild-type expression levels, consistent with their lower diversity between species. Our results suggest that promoter organization constrains the early evolutionary dynamics and in this way biases the path of long-term evolution. 相似文献
7.
8.
L. Shi T. Zhu P. Keim 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(1-2):136-141
Ribosomal RNA (5S and 45S) genes were investigated by FISH in two related legumes: soybean [Glycine max (L.) Merr.] and common bean (Phaseolis vulgaris L.). These species are both members of the same tribe (Phaseoleae), but common bean is diploid while soybean is a tetraploid which has undergone diploidization. In contrast to ploidy expectations, soybean had only one 5S and one 45S rDNA locus whereas common bean had more than two 5S rDNA loci and two 45S rDNA loci. Double hybridization experiments with differentially labelled probes indicated that the soybean 45S and 5S rDNA loci are located on different chromosomes and in their distal regions. Likewise, the common bean 45S and 5S rDNA loci were on unique chromosomes, though two of the 5S rDNA loci were on the same chromosome. FISH analysis of interphase nuclei revealed the spatial arrangement of rDNA loci and suggested expression patterns. In both species, we observed one or more 5S rDNA hybridization sites and two 45S rDNA hybridization sites associated with the nucleolar periphery. The 45S rDNA hybridization patterns frequently exhibited gene puffs as de-condensed chromatin strings within the nucleoli. The other condensed rDNA sites (both 5S and 45S) were spatially distant from the nucleolus in nucleoplasmic regions containing heterochromatin. The distribution of rDNA between the nucleoplasm and the nucleoli is consistent with differential gene expression between homologous alleles and among homoeologous loci. 相似文献
9.
The myrosinase gene family in Arabidopsis thaliana: gene organization,expression and evolution 总被引:5,自引:0,他引:5
Myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1.) is in Brassicaceae species such as Brassica napus and Sinapis alba encoded by two differentially expressed gene families, MA and MB, consisting of about 4 and 10 genes, respectively. Southern blot analysis showed that Arabidopsis thaliana contains three myrosinase genes. These genes were isolated from a genomic library and two of them, TGG1 and TGG2, were sequenced. They were found to be located in an inverted mode with their 3 ends 4.4 kb apart. Their organization was highly conserved with 12 exons and 11 short introns. Comparison of nucleotide sequences of TGG1 and TGG2 exons revealed an overall 75% similarity. In contrast, the overall nucleotide sequence similarity in introns was only 42%. In intron 1 the unusual 5 splice border GC was used. Phylogenetic analyses using both distance matrix and parsimony programs suggested that the Arabidopsis genes could not be grouped with either MA or MB genes. Consequently, these two gene families arose only after Arabidopsis had diverged from the other Brassicaceae species. In situ hybridization experiments showed that TGG1 and TGG2 expressing cells are present in leaf, sepal, petal, and gynoecium. In developing seeds, a few cells reacting with the TGG1 probe, but not with the TGG2 probe, were found indicating a partly different expression of these genes. 相似文献
10.
Downes SM 《History and philosophy of the life sciences》2004,26(1):91-104; discussion 123-9
Alternative splicing allows for the production of many gene products from a single coding sequence. I introduce the concept of alternative splicing via some examples. I then discuss some current hypotheses about the explanatory role of alternative splicing, including the claim that splicing is a significant contributor to the difference in complexity between the human genome and proteosome. Hypotheses such as these bring into question our working concepts of the gene. I examine several gene concepts introduced to cope with processes such as alternative splicing. Next I introduce some hypotheses about the evolution of mechanisms alternative splicing in higher organisms. I conclude that attention to alternative splicing reveals that we adopt an attitude that developmental theorizing must inform evolutionary theorizing and vice versa. 相似文献
11.
12.
Population connectivity is mediated by the movement of organisms or propagules through landscapes. However, little is known about how variation in the pattern of landscape mosaics affects the detectability of landscape genetic relationships. The goal of this paper is to explore the impacts of limiting factors on landscape genetic processes using simulation modeling. We used spatially explicit, individual-based simulation modeling to quantify the effects of habitat area, fragmentation and the contrast in resistance between habitat and non-habitat on the apparent strength and statistical detectability of landscape genetic relationships. We found that landscape genetic effects are often not detectable when habitat is highly connected. In such situations landscape structure does not limit gene flow. We also found that contrast in resistance values between habitat and non-habitat interacts with habitat extensiveness and fragmentation to affect detectability of landscape genetic relationships. Thus, the influence of landscape features critical to providing connectivity may not be detectable if gene flow is not limited by spatial patterns or resistance contrast of these features. We developed regression equations that reliably predict whether or not isolation by resistance will be detected independently of isolation by distance as a function of habitat fragmentation and contrast in resistance between habitat and non-habitat. 相似文献
13.
14.
15.
16.
Yu J 《基因组蛋白质组与生物信息学报(英文版)》2007,5(1):1-6
The codon table for the canonical genetic code can be rearranged in such a way that the code is divided into four quarters and two halves according to the variability of their GC and purine contents, respectively. For prokaryotic genomes, when the genomic GC content increases, their amino acid contents tend to be restricted to the GC-rich quarter and the purine-content insensitive half, where all codons are fourfold degenerate and relatively mutation-tolerant. Conversely, when the genomic GC content decreases, most of the codons retract to the AUrich quarter and the purine-content sensitive half; most of the codons not only remain encoding physicochemically diversified amino acids but also vary when transversion (between purine and pyrimidine) happens. Amino acids with sixfolddegenerate codons are distributed into all four quarters and across the two halves; their fourfold-degenerate codons are all partitioned into the purine-insensitive half in favorite of robustness against mutations. The features manifested in the rearranged codon table explain most of the intrinsic relationship between protein coding sequences (the informational content) and amino acid compositions (the functional content). The renovated codon table is useful in predicting abundant amino acids and positioning the amino acids with related or distinct physicochemical properties. 相似文献
17.
Although the three-letter genetic code that maps nucleotide sequence to protein sequence is well known, there must exist other codes that are embedded in the human genome. Recent work points to sequence-dependent variation in DNA shape as one mechanism by which regulatory and other information could be encoded in DNA. Recent advances include the discovery of shape-dependent recognition of DNA that depends on minor groove width and electrostatics, the existence of overlapping codes in protein-coding regions of the genome, and evolutionary selection for compensatory changes in nucleotide composition that facilitate nucleosome occupancy. It is becoming clear that DNA shape is important to biological function, and therefore will be subject to evolutionary constraint. 相似文献
18.
19.
A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) 总被引:20,自引:0,他引:20
Rong J Abbey C Bowers JE Brubaker CL Chang C Chee PW Delmonte TA Ding X Garza JJ Marler BS Park CH Pierce GJ Rainey KM Rastogi VK Schulze SR Trolinder NL Wendel JF Wilkins TA Williams-Coplin TD Wing RA Wright RJ Zhao X Zhu L Paterson AH 《Genetics》2004,166(1):389-417
We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM ( approximately 600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM ( approximately 500 kb) intervals detected by 662 probes (D). Both diploid and tetraploid cottons exhibit negative crossover interference; i.e., double recombinants are unexpectedly abundant. We found no major structural changes between Dt and D chromosomes, but confirmed two reciprocal translocations between At chromosomes and several inversions. Concentrations of probes in corresponding regions of the various genomes may represent centromeres, while genome-specific concentrations may represent heterochromatin. Locus duplication patterns reveal all 13 expected homeologous chromosome sets and lend new support to the possibility that a more ancient polyploidization event may have predated the A-D divergence of 6-11 million years ago. Identification of SSRs within 312 RFLP sequences plus direct mapping of 124 SSRs and exploration for CAPS and SNPs illustrate the "portability" of these STS loci across populations and detection systems useful for marker-assisted improvement of the world's leading fiber crop. These data provide new insights into polyploid evolution and represent a foundation for assembly of a finished sequence of the cotton genome. 相似文献