首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To examine whether cleavage of the phi X174 prohead accessory protein, gpB, by the OmpT protease is required for phage development in vivo, a phage mutant lacking the OmpT cleavage site and an Escherichia coli C delta ompT strain were constructed. The results of burst size experiments suggest that neither the cleavage site nor the OmpT protein is required for phi X174 development.  相似文献   

2.
B A Fane  S Head    M Hayashi 《Journal of bacteriology》1992,174(8):2717-2719
The functions of the small DNA-binding protein, gpJ, of bacteriophages phi X174 and G4 were examined by in vivo cross-complementation and sucrose gradient sedimentation. The morphogenetic roles of the two proteins may differ. The phi X174 J protein may be required for the formation or stabilization of the phi X174 prohead.  相似文献   

3.
In vitro packaging of restriction fragments of the bacteriophage phi 29 DNA-gp3 (DNA-gene product 3 complex) in the defined system was dependent on prohead RNA. Truncated prohead RNAs were obtained by in situ RNase A digestion, isolated and sequenced. Proheads having the intact 174 base RNA were compared to proheads having RNAs of 120, 95, 71, 69 or 54 bases for the capacity to package the DNA-gp3 left and right ends and internal (non-end) fragments generated by the restriction enzymes EcoRI, HpaI and BstNI. Proheads with the 174 or 120 base RNAs packaged both left and right ends; internal fragments were packaged more efficiently by proheads with the 120 base RNA. Proheads with the 95 base RNA packaged DNA-gp3 left ends and internal fragments efficiently, but lost the capacity to package right ends. Only internal fragments were packaged by proheads with the 71 base RNA, and proheads having 69 or 54 base RNAs were inactive. RNA-free proheads were effectively reconstituted with purified 174 and 120 base RNAs to produce particles similar in biological activity to the proheads from which the RNAs were isolated. The 95 base RNA was the smallest RNA of the group that could reconstitute the prohead and direct fragment packaging, although packaging was inefficient. Alteration of the specificity of DNA fragment packaging with truncated prohead RNAs has delineated RNA domains that function in DNA-gp3 recognition and prohead binding.  相似文献   

4.
The morphogenetic defects conferred by the cold-sensitive prohead accessory and scaffolding proteins of phi X174 were determined in vivo. The results suggest that the cold-sensitive prohead accessory protein blocks the formation of the 12S assembly intermediate. The cold-sensitive scaffolding protein most likely affects the stability of the prohead.  相似文献   

5.
Gene A protein of bacteriophage phi X174 plays a role as a site-specific endonuclease in the initiation and termination of phi X rolling circle DNA replication. To clarify the sequence requirements of this protein we have studied the cleavage of single-stranded restriction fragments from phi X and G4 viral DNAs using purified gene A protein. The results show that in both viral DNAs cleavage occurs at the origin and at one additional site which shows striking sequence homology with the origin region. During rolling circle replication the single-stranded viral DNA tail is covered with single-stranded DNA binding (SSB) protein. Therefore, we have also studied the effect of SSB on phi X gene A protein cleavage. In these conditions only single-stranded fragments containing the complete or almost complete origin region of 30 bases are cleaved, whereas cleavage at the additional sites of phi X or G4 viral DNAs does not occur. A model for termination of rolling circle replication which is based on these findings is presented. Finally, we present evidence that the second product of gene A, the A* protein, cleaves phi X viral DNA at the additional cleavage site in the presence of SSB, not only in vitro but also in vivo. The functional significance of this cleavage in vivo is discussed.  相似文献   

6.
A second site specific endonuclease with a novel specificity has been isolated from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for activity. Tth111II cleaves phi X174RFDNA into 11 fragments. From the analysis of 5' terminal sequences of the phi X174RFDNA fragments produced by Tth111II action, it was concluded that Tth111II recognized the DNA sequence (See formula in text) and cleaved the sites as indicated by arrows.  相似文献   

7.
B. A. Fane  M. Hayashi 《Genetics》1991,128(4):663-671
This study describes the isolation of second-site suppressors which correct for the defects associated with cold-sensitive (cs) prohead accessory proteins of bacteriophage phi X174. Five phenotypically different suppressors were isolated. Three of these suppressors confer novel temperature-sensitive (ts) phenotypes. They were unable to complement a ts mutation in gene F which encodes the major coat protein of the phage. All five suppressor mutations confer nucleotide changes in the gene F DNA sequence. These changes define four amino acid sites in the gene F protein. Three suppressor mutations placed into an otherwise wild-type background display a cold resistant phenotype in liquid culture infections when compared to a wild-type phi X174 control.  相似文献   

8.
M. C. Ekechukwu  D. J. Oberste    B. A. Fane 《Genetics》1995,140(4):1167-1174
The morphogenetic pathway of bacteriophage X 174 was investigated in rep mutant hosts that specifically block stage III single-stranded DNA synthesis. The defects conferred by the mutant rep protein most likely affect the formation or stabilization of the 50S complex, a single-stranded DNA synthesizing intermediate, which consists of a viral prohead and a DNA replicating intermediate (preinitiation complex). X 174 mutants, ogr(rep), which restore the ability to propagate in the mutant rep hosts, were isolated. The ogr(rep) mutations confer amino acid substitutions in the viral coat protein, a constituent of the prohead, and the viral A protein, a constituent of the preinitiation complex. Four of the six coat protein substitutions are localized on or near the twofold axis of symmetry in the atomic structure of the mature virion.  相似文献   

9.
Synthetic oligonucleotides, DNA ligase and DNA polymerase were used to construct double-stranded DNA fragments homologous to the first 25, 27 or 30 b.p. of the origin of replication of bacteriophage phi X174 (nucleotides 4299-4328 of the phi X174 DNA sequence). The double-stranded DNA fragments were cloned into the unique SmaI or HindIII restriction sites in the kanamycin-resistance gene of pACYC177 (AmpR, KmR). Recombinant plasmids were picked up by colony hybridization. DNA sequencing showed that not only recombinant plasmids with the expected insert were formed, but also recombinant plasmids with a shorter insert. Recombinant plasmids with an insert homologous to the first 24, 25, 26, 27, 28 or all 30 b.p. of the phi X174 origin region were thus obtained. Supercoiled plasmids containing a sequence homologous to the first 27, 28 or 30 b.p. of the phi X174 origin region are nicked by the phi X174 gene A protein. However, the other supercoiled plasmids are not nicked by the phi X174 gene A protein. These results show that the first 27 b.p. of the phi X174 origin region are sufficient as well as required for the initiation step in phi X174 RF DNA replication, i.e. the cleavage by gene A protein.  相似文献   

10.
The protease that degrades the beta subunit of the soybean (Glycine max (L.) Merrill) storage protein beta-conglycinin was purified from the cotyledons of seedlings grown for 12 days. The enzyme was named protease C2 because it is the second enzyme to cleave the beta-conglycinin storage protein, the first (protease C1) being one that degrades only the alpha' and alpha subunits of the storage protein to products similar in size and sequence to the remaining intact beta subunit. Protease C2 activity is not evident in vivo until 4 days after imbibition of the seed. The 31 kDa enzyme is a cysteine protease with a pH optimum with beta-conglycinin as substrate of 5.5. The action of protease C2 on native beta-conglycinin produces a set of large fragments (52-46 kDa in size) and small fragments (29-25 kDa). This is consistent with cleavage of all beta-conglycinin subunits at the region linking their N- and C-domains. Protease C2 also cleaves phaseolin, the Phaseolus vulgaris vicilin homologous to beta-conglycinin, to fragments in the 25-28 kDa range. N-Terminal sequences of isolated beta-conglycinin and phaseolin products show that protease C2 cleaves at a bond within a very mobile surface loop connecting the two compact structural domains of each subunit. The protease C2 cleavage specificity appears to be dictated by the substrate's three-dimensional structure rather than a specificity for a particular amino acid or sequence.  相似文献   

11.
Treatment of the dihydrolipoyl transacetylase-protein X-kinase subcomplex (E2-X-KcKb) with protease Arg C selectively converted protein X into an inner domain fragment (Mr approximately equal to 35,000) and an outer (lipoyl-bearing) domain fragment (Mr approximately equal to 15,500). These fragments were larger and much smaller, respectively, than the inner domain and outer domain fragments derived from the E2 component, supporting the conclusion that protein X is distinct from the E2 component. Protease Arg C cleaved the Kb subunit more slowly than protein X. An increase in kinase activity correlated with this cleavage of the Kb subunits. An even slower cleavage of E2 subunits generated an inner domain fragment (Mr approximately equal to 31,500) and a lipoyl-bearing domain fragment (Mr approximately equal to 49,000) which had Mr values at least 3,000 and 10,000 larger, respectively, than the corresponding E2 fragments generated by trypsin treatment of the subcomplex. Following various extents of cleavage with protease Arg C or trypsin, residual oligomeric subcomplexes were isolated and characterized. We found that selective removal of the lipoyl-bearing domain of protein X did not alter lipoyl-mediated regulation of the kinase indicating that the lipoyl residues bound to E2 subunits are effective, that the inner domain of protein X remained associated with the inner domain of E2 subunits following the complete removal of the outer domains of both E2 and protein X, that, with only 10% of the E2 subunits intact, nearly half of the catalytic (Kc) subunits of the kinase were bound by the residual subcomplex, and that removal of the remaining outer domains from E2 subunits released the Kc subunits. Thus, protein X is unique among the subunits of the complex in binding tightly to the oligomeric inner domain of the transacetylase, and the outer domain of the transacetylase serves to bind to and facilitate the regulation of the catalytic subunit of the kinase.  相似文献   

12.
Mutational analysis of the bacteriophage phi X174 replication origin   总被引:2,自引:0,他引:2  
Bacteriophage phi X174 mutants within the 30 base-pair replication origin were constructed using oligodeoxynucleotide-directed mutagenesis. A total of 18 viable base substitution mutants at 13 different positions within the origin region were obtained. The majority of these ori mutants have a plaque morphology and burst size comparable to that of wild-type phi X174. Two phi X174 ori mutants with a reduced growth ability spontaneously acquired additional mutations that enhanced the growth rate. The additional mutation was located at the same site as the original mutation or was located in the N-terminal part of the gene A protein. This latter secondary mutation is responsible for a better binding and/or recognition of the gene A protein to the mutated origin. In a Darwinian experiment wild-type phi X174 outgrows all phi X174 ori mutants, indicating the superiority of the wild-type ori sequence for the reproduction of bacteriophage phi 174. Insertions and deletions were constructed at different positions within the phi X174 replication origin cloned in a plasmid. Small insertions and deletions in the A + T-rich spacer region do not inhibit phi X174 gene A protein cleavage in vitro, but severely impair packaging of single-stranded plasmid DNA in viral coats.  相似文献   

13.
It is already known that phi X gene A protein converts besides phi X RFI DNA also the RFI DNAs of the single-stranded bacteriophages G4, St-1, alpha 3 and phi K into RFII DNA. We have extended this observations for bacteriophages G14 and U3. Restriction enzyme analysis placed the phi X gene A protein cleavage site in St-1 RF DNA in the HinfI restriction DNA fragment F10 and in the overlapping HaeIII restriction DNA fragment Z7. The exact position and the nucleotide sequence at the 3'-OH end of the nick were determined by DNA sequence analysis of the single-stranded DNA subfragment of the nicked DNA fragment F10 obtained by gelelectrophoresis in denaturing conditions. A stretch of 85 nucleotides of St-1 DNA around the position of the phi X gene A protein cleavage site was established by DNA sequence analysis of the restriction DNA fragment Z7F1. Comparison of this nucleotide sequence with the previously determined nucleotide sequence around the cleavage site of phi X gene A protein in phi X174 RF DNA and G4 RF DNA revealed an identical sequence of only 10 nucleotides. The results suggest that the recognition sequence of the phi X174 gene A protein lies within these 10 nucleotides.  相似文献   

14.
B C Lin  M C Chien    S Y Lou 《Nucleic acids research》1980,8(24):6189-6198
A type II restriction endonuclease Xmn I with a novel site specificity has been isolated from Xanthomonas manihotis. Xmn I does not cleave SV40 DNA, but cleaves phi X174 DNA into three fragments, which constitute 76.61%, 18.08% and 5.31% of the total length of 5386 base pairs, and cleaves pBR322 DNA into two fragments of 55.71% and 44.29% of the entire 4362 base pairs. The nucleotide sequences around the cleavage sites made by Xmn I are not exactly homologous, but they have a common sequence of 5' GAANNNNTTC 3' according to a simple computer program analysis on nucleotide sequences of phi X174 DNA, pBR322 DNA and SV40 DNA. The results suggest that the cleavage site of Xmn I is located within its recognition sequence of 5' GAANNNNTTC 3'.  相似文献   

15.
The activity of the DNA packaging adenosine triphosphatase (ATPase) of the Bacillus subtilis bacteriophage phi 29 is dependent upon prohead RNA. The 174 nucleotide viral-encoded RNA is positioned on the head-tail connector at the portal vertex of the phi 29 precursor shell (prohead). Here, the RNA interacts with the ATP-binding gene 16 product (gp16) to constitute the DNA-packaging ATPase and initiate DNA packaging in vitro. Both the prohead connector (gene 10 product, gp10) and gp16 may utilize an RNA recognition motif characteristic of a number of RNA-associated proteins, and the binding of gp16 by proheads shields the prohead RNA from RNase A. The ATPase activity of gp16 is stimulated fourfold by RNA and tenfold by proheads with RNA. RNA is needed continuously for the gp16/RNA ATPase activity and is essential for the gp16/prohead ATPase activity. The prohead, with its connector, RNA and associated gp16 in an assembly-regulated configuration, hydrolyzes ATP and drives phi 29 DNA translocation.  相似文献   

16.
The A and A* proteins of phage phi X174 are encoded in the same reading frame in the viral genome; the smaller A protein is the result of a translational start signal with the A gene. To differentiate their respective functions, oligonucleotide-directed site-specific mutagenesis was used to change the ATG start codon of the phi X 174 A* gene, previously cloned into pCQV2 under lambda repressor control, into a TAG stop codon. The altered A gene was then inserted back into phi X replicative form DNA to produce an amber mutant, phi XamA*. Two different Escherichia coli amber suppressor strains infected with this mutant produced viable progeny phage with only a slight reduction in yield. In Su+ cells infected with phi XamA*, phi X gene A protein, altered at one amino acid, was synthesized at normal levels; A* protein was not detectable. These observations indicate that the A* protein increases the replicative efficiency of the phage, perhaps by shutting down host DNA replication, but is not required for replication of phi X174 DNA or the packaging of the viral strand under the conditions tested.  相似文献   

17.
A second site specific endonuclease with novel specificity has been purified from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for endonuclease activity. Tth111II cleaves phi X174RFDNA into 11 fragments and lambda NA into more than 25 fragments. From the 5'-terminal sequences of TthlllII fragments of phi X174RFDNA determined by the two dimensional homochromatography and the survey on nucleotide sequence of phi X174RFDNA, it was concluded that Tth111II recognizes the DNA sequence (see former index) and cleaves the sites as indicated by the arrows.  相似文献   

18.
Process of attachment of phi X174 parental DNA to the host cell membrane   总被引:2,自引:0,他引:2  
The phi X174-DNA membrane complex was isolated from Escherichia coli infected with phi X174 am3 by isopycnic sucrose gradient centrifugation followed by zone electrophoresis. The phi X174 DNA-membrane complex banded at two positions, intermediate density membrane fraction and cytoplasmic membrane fraction, having bouyant densities of 1.195 and 1.150 g/ml, respectively. Immediately after infection with phi X147, replicating DNA was pulse-labeled and then the incorporated label was chased. The radioactivity initially recovered in the intermediate density membrane fraction migrated to the cytoplasmic membrane fraction. The DNAs from both complexes sedimented mainly at the position of parental replicative form I (RFI). The phi X174 DNA-membrane complex contained a speficic membrane-bound protein having a molecular weigth of 80,000 which is accumulated in the host DNA-membrane complex. These results suggest that when phi X174 DNA penetrated into cells in the early phase of infection, single-stranded circular DNA was converted to parental RFI at a wall/membrane adhesion region and migrated to the cytoplasmic membrane fraction, where the parental RF could serve as a template in the replication of progeny RF.  相似文献   

19.
Gene A of the phi X174 genome codes for two proteins, A and A* (Linney, E.A., and Hayashi, M.N. (1973) Nature New Biol. 245, 6-8) of molecular weights 60,000 and 35,000, respectively. The phi X A* protein is formed from a natural internal initiator site within the A gene cistron while the phi X A protein is the product of the entire A gene. These two proteins have been purified to homogeneity as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Previous studies have shown that the phi X A protein is an endonuclease which specifically introduces a discontinuity in the A cistron of the viral strand of supertwisted phi XRFI DNA. In addition to this activity, the phi X A protein also causes relaxation of supertwisted phi XRFI DNA and formation of a phi XRFH DNA . phi X A protein complex which has a discontinuity in the A cistron of the viral strand. This isolatable complex supports DNA synthesis when supplemented with extracts of uninfected Escherichia coli which lack phi X A protein and phi XRFI DNA. The phi XRFII DNA . phi X A protein complex can be attacked by exonuclease III but is not susceptible to attack by E. coli DNA polymerase I, indicating that the 5'-end of the complex is blocked. Attempts to seal the RFII structure generated from the phi XRFII DNA . phi X A protein complex with T4 DNA ligase in the presence or absence of DNA polymerase were unsuccessful. The phi X A protein does not act catalytically in the cleavage of phi XRFI DNA. Under conditions leading to the quantitative cleavage of phi XRFI DNA, the molar ratio of phi XRFI DNA to added phi X A protein was approximately 1:10. At this molar ratio, cross-linking experiments with dimethyl suberimidate yielded 10 distinct protein bands which were multiples of the monomeric phi X A protein. In the absence of DNA or in the presence of inactive DNA (phi XRFII DNA) no distinct protein bands above a trimer were detected. We found it possible in vitro to form a phi XRFII DNA . phi X A protein complex with wild-type phi XRFI DNA (phi X A gene+) and with phi XRFI DNA isolated from E. coli (su+) infected with phage phi X H90 (an am mutant in the phi X A gene). Thus, in vitro, in contrast to in vivo studies, phi X A protein is not a cis acting protein. The purified phi X A* protein does not substitute for the phi X A protein in in vitro replication of phi XRFI DNA nor does it interfere with the action of the phi X A protein which binds only to supertwisted phi XRFI DNA. In contrast, the phi X A* protein binds to all duplex DNA preparations tested. This property prevents nucleases of E. coli from hydrolyzing duplex DNAs to small molecular weight products.  相似文献   

20.
A DNA protein complex that is a precursor of mature phi X174 phage was isolated. The complex sedimented with an S value of 50 in a sucrose gradient and contained phage DNA consisting of a replicative form molecule with an extended tail of single-stranded viral DNA. The viral-strand DNA ranged from one to two genomes in length. Proteins coded on the phi X174 genome as well as the host genome were associated with the viral DNA in the 50S precursor complex. Our results indicated that both viral DNA synthesis and cleavage of the growing viral-strand DNA occurred in the 50S complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号