首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes two packed bed bioreactor configurations which were used to culture a mouse-mouse hybridoma cell line (ATCC HB-57) which produces an IgG1 monoclonal antibody. The first configuration consists of a packed column which is continuously perfused by recirculating oxygenated media through the column. In the second configuration, the packed bed is contained within a stationary basket which is suspended in the vessel of a CelliGen bioreactor. In this configuration, recirculation of the oxygenated media is provided by the CelliGen Cell Lift impeller. Both configurations are packed with disk carriers made from a non-woven polyester fabric. During the steady-state phase of continuous operation, a cell density of 108 cells per cm3 of bed volume was obtained in both bioreactor configurations. The high levels of productivity (0.5 gram MAb per 1 of packed bed per day) obtained in these systems demonstrates that the culture conditions achieved in these packed bed bioreactors are excellent for the continuous propagation of hybridomas using media which contains low levels (1 %) of serum as well as serum-free media. These packed bed bioreactors allow good control of pH, dissolved oxygen and temperature. The media flows evenly over the cells and produces very low shear forces. These systems are easy to set up and operate for prolonged periods of time. The potential for scale-up using Fibra-cel carriers is enhanced due to the low pressure drop and low mass transfer resistance, which creates high void fraction approaching 90% in the packed bed.  相似文献   

2.
The effects of several different substances, including insulin, transferrin, ethanolamine, selenite and butyrate on the growth of murine hybridoma 2F7 cells, which secrete monoclonal antibody against small cell lung cancer, were investigated, and a serum-free medium SFMI was formulated. The effects of taurine, spermidine, progesterone and adenine on the cell growth were tested further on the basis of the medium SFMI, and a modified serum-free medium SFM II was established. On the basis of medium SFM II, the substitution tests of ferric citrate for transferrin were carried out, and it was found that transferrin could be replaced. The experiments suggested that the formulated serum-free medium was suitable for 2F7 cell growth and monoclonal antibody secretion, and thus facilitated subsequent purification of monoclonal antibody.Abbreviations BSA bovine serum albumin - CS calf serum - DMEM Dulbecco's modified Eagle's medium - ELISA enzyme-linked immunosorbant assay - McAb monoclonal antibody - PEG polyethylene glycol - SFM serum-free medium  相似文献   

3.
For the mouse hybridoma cell line VO 208, kinetics of growth, consumption of glucose and glutamine, and production of lactate, ammonia and antibodies were compared in batch and continuous cultures. At a given specific growth rate, different metabolic activities were observed: a 40% lower glucose and glutamine consumption rate, but a 70% higher antibody production rate in continuous than in batch culture. Much higher metabolic rates were also measured during the initial lag phase of the batch culture. When representing the variation of the specific antibody production rate as a function of the specific growth rate, there was a positive association between growth and antibody production in the batch culture, but a negative association during the transient phase of the continuous culture. The kinetic differences between cellular metabolism in batch and continuous cultures may be result of modifications in the physiology and metabolism of cells which, in continuous cultures, were extensively exposed to glucose limitations.Institut National Polytechnique de Lorraine, ENSAIA BP 172, 2 avenue de la forêt de Haye, 54505, Vandoeuvre Cedex France  相似文献   

4.
A general weaning procedure is described which allowed a range of hybridomas to be weaned readily off serum without loss of antibody production. Initial work was carried out with one cell line only (SPO1 cells) and one serum substitute containing a final protein concentration of 40 mg l-1. The SPO1 cells were first adapted to a range of readily available basal media and then weaned off serum by a range of protocols. From this work an optimal weaning protocol and basal medium for weaning were determined. These were then used to wean the SPO1 cells and two other cell lines off serum with a second, protein free, serum substitute with varying concentrations of defined proteins added. All three cell lines investigated were readily weaned off serum by this protocol at protein concentrations as low as 1 mg l-1. No loss of antibody production was observed with any of the cell lines. The weaning procedure outlined is both simple and rapid and has been successfully adopted in our laboratory by relatively inexperienced cell culture technicians.  相似文献   

5.
We have developed a high cell density and high product concentration culture system recycling high molecular weight components. The production of monoclonal antibodies in high concentration was performed by this culture system with mouse human hybridoma H2 and V6 cells in serum-free defined media.The concentration of IgG after 48 days culture of H2 cells in ITES-eRDF reached 2 mg/ml and the purity of IgG in culture fluid was 61%. In addition, high molecular weight components in serum-free media, such as transferrin or BSA, could be reduced to 5% of the original concentration.  相似文献   

6.
A major variable to consider in the production of biologicals from mammalian cell cultures is the mode of operation, be it a batch, continuous, perfusion, fed-batch or other production method. The final choice must consider a number of fundamental and economic issues. Here we present some antibody production data from different cell lines using different modes of production and discuss the important factors for consideration in choosing a production strategy. It was found that the productivity of batch cultures was lower than that obtained in continuous and perfused cultures, but that productivity could be improved by implementing suitable feeding strategies. The antibody productivity of one cell line, MCL1, during exponential phase was not affected by media type or glucose level. The maximum productivity of two cell lines in continuous culture was found to occur at dilution rates below the maximum, from 0.019 to 0.030 hr–1.  相似文献   

7.
Batch and fed-batch cultures of a murine hybridomacell line (AFP-27) were performed in a stirred tankreactor to estimate the effect of feed rate on growthrate, macromolecular metabolism and antibodyproduction. Macromolecular composition was foundto change dynamically during batch culture ofhybridoma cells possibly due to active production ofDNA, RNA and protein during the exponential phase.Antibody synthesis is expected to compete with theproduction of cellular proteins from the amino acidpool. Therefore, it is necessary to examine therelationship between cell growth in terms of cellularmacromolecules and antibody production. In this study,we searched for an optimum feeding strategy bychanging the target specific growth rate in fed-batchculture to give higher antibody productivity whileexamining the macromolecular composition. Concentratedglucose (60 mM) and glutamine (20 mM) in DR medium(1:1 mixture of DMEM and RPMI) with additional aminoacids were fed continuously to the culture and thefeed rate was updated after every sampling to ensureexponential feeding (or approximately constantspecific growth rate). Specific antibody productionrate was found to be significantly increased in thefed-batch cultures at the near-zero specific growthrate in which the productions of cellular DNA, RNA,protein and polysaccharide were strictly limited byslow feeding of glucose, glutamine and other nutrients. Possible implications of these results are discussed.  相似文献   

8.
Relationship between monoclonal antibody (MAb) productivity and growth rate, and effects of high cell density on MAb production of hybridoma T0405 cells immobilized in macroporous cellulose carriers were investigated in continuous and batch cultures. The results showing, that the specific MAb production rate increased with increasing specific growth rate in both suspended and immobilized continuous cultures indicate a positively growth-associated relationship between MAb productivity and growth rate. Moreover, the specific production rate was higher in the immobilized cell culture than that in suspended one at all dilution rates. In order to clarify these phenomena, MAb mRNA expression and cell cycle distribution were investigated in batch cultures with immobilized cells and suspended cells. RT-PCR was used for observation of MAb mRNA expression and a two-color bromode-oxyuridine (BrdU)/propidium iodide (PI) flow cytometry method for determination of cell cycle distribution. The results revealed that MAb mRNA expression reached the peak during the exponential growth phase, suggest a positively growth-associated MAb production. And the immobilized cells continued the MAb mRNA expression until dead phase, which was longer than that in suspended cells. The cell cycle distribution patterns were observed almost the same for both immobilized and suspended cells. Such results may imply that a high cell density state has positive influence on the mRNA expression and on growth-associated MAb productivity of T0405 cells.  相似文献   

9.
As a result of recent advances in flow cytometry, renewed interest is shown in modeling the kinetic behavior of cells in culture on the basis of cell cycle parameters. An important but often overlooked kinetic variable in hybridoma cultures is the cell death rate. Not only the overall cell growth but also the kinetics of nutrient metabolism and monoclonal antibody production have been shown to depend on the cell death rate in continuous suspension hybridoma cultures. The present study shows that the death rate in hybridoma cultures is proportional to the fraction of cells arrested in the G(1) phase of the cell cycle. The steady-state cell age distributions in the various phases of the division cycle have been calculated analytically. A simple mathematical model has been used to produce the profiles of the cycling and arrested cell fractions with respect to the dilution rate. The calculated steady-state growth rate, death rate, and viability profiles are shown to be in agreement with recently published experimental data from continuous suspension hybridoma cultures. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
Most of the existing production capacity is based on fed‐batch bioreactors. Thanks to the development of more efficient cell lines and the development of high‐performance culture media, cell productivity dramatically increased. In a manufacturing perspective, it is necessary to clear as quickly as possible the protein A capture step to respect the manufacturing agenda. This article describes the methodology applied for the design of a multicolumn chromatography process with the objective of purifying as quickly as possible 1,000 and 15,000 L fed‐batch bioreactors. Several recent and reference protein A resins are compared based on characteristic values obtained from breakthrough curves. The importance and relevance of resin parameters are explained, and purposely simple indicators are proposed to quickly evaluate the potential of each candidate. Based on simulation data, the optimum BioSC systems associated with each resin are then compared. The quality of the elution delivered by each resin is also compared to complete the assessment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:941–953, 2017  相似文献   

11.
The stability of the hybridoma cell line MN12 in a long-term homogeneous continuous culture was studied using a panel of analytical methods. These include two flow cytometry methods, for the determination of relative cytoplasmic and membrane IgG content. In addition, the antibody production was determined by an ELISA, and the metabolic state of the cells was determined by means of glucose consumption and lactate production.These results indicate a possible selection of variants of MN12 hybridoma cells with an overall aerobic metabolism, but with a higher glucose consumption rate and a higher lactate production rate. These variants are mainly characterized by a different membrane IgG content and cytoplasmic antibody content. These changes may possibly be affected by the culture age.  相似文献   

12.
In order to elucidate the hybridoma life cycle and the limiting factors in perfusion systems, we performed cultures in a stirred tank bioreactor, coupled to an external tangential flow filtration unit. Cell density and antibody production in perfusion were consistent with previous studies. The average life span of the cells (2.1-2.2 days), antibody, productivity per cell produced (30-38 mg/10(9) cells) and cell size diameter evolution appeared similar to values observed in batch cultures. These observations highly suggest a similar "grow or die" life cycle. Cell and antibody production, strictly related to the medium perfusion rate, seem to be under the control of the nutrient availability. A hypothesis to explain such a life cycle of hybridoma cells in perfusion systems and a model for viable and dead cell density is proposed.  相似文献   

13.
This article describes the retrovirus expression with optimal nutrient supply and its potential growth inhibition effects in continuous hybridoma cell cultivation. A special reactor setup with total cell retention was developed to examine growth inhibition effects. Using this fermentation strategy we observed a decrease of viability cell rate which occurred at a defined state of the process despite sufficient nutrient supply. Therefore we assume that inhibitory substances are responsible for these effects. The molecular weight range of the inhibitory substances and the possible retrovirus cooperation of these growth inhibition effects were examined. To determine the molecular weight range we used the following methods: ultrafiltration, gelfiltration, ultracentrifugation and gel electrophoresis. Furthermore, RT-PCR and western-/immunoblot are used to detect retrovirus particles in the supernatant and to show a retrovirus participation on growth inhibition effects. The possible growth modulation was tested in a biological assay (MTT-assay). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
A hybridoma cell line, AFP-27-P, was cultivated in continuous culture under glucose-limited conditions. The viable cell concentration, dead-cell concentration, and cell volume all varied with the dilution rate. A model previously developed for a nonproducing clone of the same cell line, AFP-27-NP, was extended to describe the behavior of the cells. The relationship between the specific growth rate and glucose concentration is described by a function similar to the Monod model. A threshold glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentrations and specific growth rates above these levels. The relationship between the death rate and the glucose concentration is described by an inverted Monod-type function. Furthermore, the yield coefficient based on glucose is constant in the lower range of specific growth rates and changes to a new constant value in the upper range of specific growth rates. No maintenance term for glucose consumption is used; in the plot of specific glucose consumption rate vs. specific growth rate, the line intercepts the specific growth rate at a value close to the minimum growth rate. The productivity of antibody as a function of the specific growth rate is described by a mixed type model with a noon-growth-associated term and a negative-growth-associated term. The values for the model parameters were determined from regression analysis of the steady state data.  相似文献   

15.
A simple protein free medium was formulated and tested in suspension culture using three hybridoma cell lines. The medium, referred to as CDSS (Chemically Defined Serum Substitutes), consisted of the basal medium DMEM:Ham F12, 1:1, with HEPES (D12H), plus pluronic F68, trace elements, ferric citrate, ascorbic acid, and ethanolamine. No protein or lipid components were added. All three cell lines were weaned off serum using CDSS and a commercially available protein free medium PFHM-II. Data shown here indicated that normally cells took 1–7 weeks to wean off serum and an additional 2–7 weeks to adapt to suspension culture. After adaptation the cells were able to grow well in suspension culture using both protein free media and in the main performed better than serum containing controls. The stability of the three hybridoma cells for antibody production following freeze/thaw procedures and long term subculturing was also tested. All three lines were frozen using our protein free CDSS medium (containing 0.75% bovine serum albumin and 10% dimethyl sulfoxide) in liquid nitrogen for up to one year. Cells thawed from these stocks recovered well and were able to maintain good growth and antibody production characteristics. One line was shown to grow using our protein free CDSS medium in suspension culture for 12 weeks without loss of antibody productivity.  相似文献   

16.
The protein disulfide isomerase (PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody (MAb) refulding and assembly which accompanies disulfide bond formation. The MAbin vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb intermediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hyboridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant for a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specifle MAb productivity exists.  相似文献   

17.
A Tubular Liquid Film Reactor was designed as a model system to transfer a batch culture kinetic to a continuous cascade. Cell density, product formation and substrate consumption rates were followed during fermentation at two dilution rates. In spite of the high dilution rates effective in each segment by itself high cell densities of up to 107 cells/ml were achieved due to cell sedimentation. The model character of the reactor was taken to determine critical values of substrate concentrations that influence production rates and result in an adaptation of metabolism.Abbreviations TLFR tubular liquid film reactor  相似文献   

18.
An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame.  相似文献   

19.
Overflow metabolism is an undesirable characteristic of aerobic cultures of Escherichia coli. It results from elevated glucose consumption rates that cause a high substrate conversion to acetate, severely affecting cell physiology and bioprocess performance. Such phenomenon typically occurs in batch cultures under high glucose concentration. Fed-batch culture, where glucose uptake rate is controlled by external addition of glucose, is the classical bioprocessing alternative to prevent overflow metabolism. Despite its wide-spread use, fed-batch mode presents drawbacks that could be overcome by simpler batch cultures at high initial glucose concentration, only if overflow metabolism is effectively prevented. In this study, an E. coli strain (VH32) lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) with a modified glucose transport system was cultured at glucose concentrations of up to 100 g/L in batch mode, while expressing the recombinant green fluorescence protein (GFP). At the highest glucose concentration tested, acetate accumulated to a maximum of 13.6 g/L for the parental strain (W3110), whereas a maximum concentration of only 2 g/L was observed for VH32. Consequently, high cell and GFP concentrations of 52 and 8.2 g/L, respectively, were achieved in VH32 cultures at 100 g/L of glucose. In contrast, maximum biomass and GFP in W3110 cultures only reached 65 and 48%, respectively, of the values attained by the engineered strain. A comparison of this culture strategy against traditional fed-batch culture of W3110 is presented. This study shows that high cell and recombinant protein concentrations are attainable in simple batch cultures by circumventing overflow metabolism through metabolic engineering. This represents a novel and valuable alternative to classical bioprocessing approaches.  相似文献   

20.
This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete‐event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision‐making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E‐factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium‐sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed‐batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision‐making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854–866, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号