共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dan Shi Olga Nikodijević Kenneth A. Jacobson John W. Daly 《Cellular and molecular neurobiology》1993,13(3):247-261
1. | Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors. |
2. | The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered. |
3. | The densities of cortical 1 and cerebellar 2 adrenergic receptors are reduced byca. 25%, while the densities of cortical 1 and 2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26–30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40–50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered. |
4. | The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%. |
5. | The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system. |
3.
Oppelt D Rodnight R Horn J Fitarelli D Kommers T Oliveira D Wofchuk S 《Neurochemical research》2004,29(8):1541-1545
Phosphorylation of glial fibrillary acidic protein (GFAP) in slices from immature rats is stimulated by glutamate via a group II metabotropic glutamate receptor (mGluR II) and by absence of external Ca2+ in reactions that are not additive (Wofchuk and Rodnight, Neurochem. Int. 24:517-523, 1994). These observations suggested that glutamate, via an mGluR, inhibits Ca(2+)-entry through L-type Ca2+ channels and down-regulates a Ca(2+)-dependent dephosphorylation event coupled to GFAP. Because ryanodine receptors are present on internal Ca2+ stores and are associated with L-type Ca(2+)-channels, we investigated the possibility that the glutamatergic modulation of GFAP phosphorylation involves internal Ca2+ stores regulated by ryanodine receptors and whether the Ca2+ originating from these stores acts in a similar manner to external Ca2+. The results showed that the ryanodine receptor-agonists, caffeine and ryanodine and thapsigargin, all of which in appropriate doses increase cytoplasmic Ca2+, reversed the stimulation of GFAP phosphorylation given by 1S,3R-ACPD, an mGluR II agonist. 相似文献
4.
5.
David J. Triggle 《Chirality》1996,8(1):35-38
Ion channels are pharmocologic receptors and as such exhibit stereoselective interactions with drugs. Ion channels are conformationally mobile transmembrane proteins existing in a number of open and closed states. Drug interactions with these different states may differ quantitatively and qualitatively. Stereoselectivity may not be a constant factor and may change according to channel state as determined by stimulus mode or experimental conditions. Selected examples are cited for Na+ and Ca2+ channels. © 1996 Wiley-Liss, Inc. 相似文献
6.
Ethylenediamine (EDA) and piperazine are known GABA-A receptor agonists and this activity appears to reside in their carbamate adducts. In CO2-free incubation medium EDA and piperazine weakly reverse the inhibitory action of 1 M GABA on specific, [35S]t-butylbicyclophosphorothionate (35S-TBPS) binding to rat brain membranes in vitro. In 25 mM sodium bicarbonate buffer, EDA and piperazine much more potently inhibit35S-TBPS binding in a way reversible by the GABA-A receptor blocker R5135. Thus, native EDA and piperazine are weak GABA-A receptor blockers, while their presumed carbamate adducts, formed by reaction with bicarbonate, are more potent GABA-A receptor agonists. Virtually all structural modifications of EDA or piperazine result in GABA-A receptor blockers, even in the presence of bicarbonate, judging from their abilities to fully or partially reverse the inhibitory effect of GABA on35S-TBPS binding. Of 12 non-aromatic piperazine or EDA derivatives, the piperazine derivatives are the more potent GABA antagonists, although all are weak compared to the mono N-aryl derivatives. Nineteen mono N-aryl EDA derivatives are moderately potent GABA antagonists, including 10 with demonstrated or potential antidepressant activity. Most of the N-aryl piperazines are moderately to highly potent GABA antagonists one (pitrazepin) being 4 to 5 times more potent than bicuculline. There are several clinically effective antidepressants (e.g. Amoxapine, Mianserine) and antipsychotics (Clothiapine, Loxapine, Metiapine, Clozapine and Fluperlapine) among the more potent N-aryl piperazine GABA antagonists. We suggest that the antidepressant and antipsychotic effects, as well as the convulsions, anxiety, panic attacks and insomnia caused by the much studied 1-(m-chlorophenyl-piperazine) may be due to GABA-A receptor blockade. It might be worthwhile to clinically test additional N-aryl piperazines and N-aryl EDAs for antidepressant/antipsychotic activity. 相似文献
7.
Conde SV Obeso A Vicario I Rigual R Rocher A Gonzalez C 《Journal of neurochemistry》2006,98(2):616-628
Caffeine, an unspecific antagonist of adenosine receptors, is commonly used to treat the apnea of prematurity. We have defined the effects of caffeine on the carotid body (CB) chemoreceptors, the main peripheral controllers of breathing, and identified the adenosine receptors involved. Caffeine inhibited basal (IC50, 210 microm) and low intensity (PO2 approximately 66 mm Hg/30 mm K+) stimulation-induced release of catecholamines from chemoreceptor cells in intact preparations of rat CB in vitro. Opposite to caffeine, 5'-(N-ethylcarboxamido)adenosine (NECA; an A2 agonist) augmented basal and low-intensity hypoxia-induced release. 2-p-(2-Carboxyethyl)phenethyl-amino-5'-N-ethylcaboxamido-adenosine hydrochloride (CGS21680), 2-hexynyl-NECA (HE-NECA) and SCH58621 (A2A receptors agents) neither affected catecholamine release nor altered the caffeine effects. The 8-cycle-1,3-dipropylxanthine (DPCPX; an A1/A2B antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754; an A2B antagonist) mimicking of caffeine indicated that caffeine effects are mediated by A2B receptors. Immunocytochemical A2B receptors were located in tyrosine hydroxylase positive chemoreceptor cells. Caffeine reduced by 52% the chemosensory discharges elicited by hypoxia in the carotid sinus nerve. Inhibition had two components with pharmacological analysis indicating that A2A and A2B receptors mediate, respectively, the low (17 x 10(-9) m) and high (160 x 10(-6) m) IC50 effects. It is concluded that endogenous adenosine, via presynaptic A2B and postsynaptic A2A receptors, can exert excitatory effects on the overall output of the rat CB chemoreceptors. 相似文献
8.
Damgaard Inge Nyitrai Gabriella Kovács Ilona Kardos Julianna Schousboe Arne 《Neurochemical research》1999,24(9):1189-1193
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site. 相似文献
9.
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. As one of several types of endogenous receptors, GABAA receptors have been shown to be essential in most, if not all, aspects of brain functioning, including neural development and information processing. Mutations in genes encoding GABAA receptors and alterations in the function of GABAA receptors are associated with many neurologic diseases, and GABAA receptors have been clinically targeted by many drugs, such as benzodiazepines and general anesthetics. Extensive studies have revealed a number of intracellular chaperons/interactions for GABAA receptors, providing a protein-protein network in regulating the trafficking and location of GABAA receptors in the brain. Recently, neurexins and neuroligins, two families of transmembrane proteins present at neurological synapses, are implicated as new partners to GABAA receptors. These works shed new light on the synaptic regulation of GABAA receptor activity. Here, we summarized the proteins that were implicated in the function of GABAA receptors, including neurexins and neuroligins. 相似文献
10.
González A Kirsch WG Shirokova N Pizarro G Stern MD Ríos E 《The Journal of general physiology》2000,115(2):139-158
Amplitude, spatial width, and rise time of Ca(2+) sparks were compared in frog fast-twitch muscle, in three conditions that alter activation of release channels by [Ca(2+)]. A total of approximately 17,000 sparks from 30 cells were evaluated. In cells under voltage clamp, caffeine (0.5 or 1 mM) increased average spark width by 28%, rise time by 18%, and amplitude by 7%. Increases in width were significant even among events of the same rise time. Spontaneous events recorded in permeabilized fibers with low internal [Mg(2+)] (0.4 mM), had width and rise times greater than in reference, and not significantly different than those in caffeine. The spark average in reference rides on a continuous fluorescence "ridge" and is continued by an "ember," a prolongation of width approximately 1 microm and amplitude <0.2, vanishing in approximately 100 ms. Ridge and ember were absent in caffeine and in permeabilized cells. Exposure of voltage-clamped cells to high internal [Mg(2+)] (7 mM) had effects opposite to caffeine, reducing spark width by 26% and amplitude by 27%. In high [Mg(2+)], the ember was visible in individual sparks as a prolongation of variable duration and amplitude up to 1.2. Based on simulations and calculation of Ca(2+) release flux from averaged sparks, the increase in spark width caused by caffeine was interpreted as evidence of an increase in radius of the release source-presumably by recruitment of additional channels. Conversely, spark narrowing suggests loss of contributing channels in high Mg(2+). Therefore, these changes in spark width at constant rise times are evidence of a multichannel origin of sparks. Because ridge and ember were reduced by promoters of Ca(2+)-dependent activation (caffeine, low [Mg(2+)]) and became more visible in the presence of its inhibitors, they are probably manifestations of Ca(2+) release directly operated by voltage sensors. 相似文献
11.
目的旨在探讨脑干听觉传入通路中GABA能神经递质及GABAA受体对电刺激位听神经传入冲动的影响.方法使用出生后0~5 d的ddy/ddy小鼠制备脑干切片.脑片经电压敏感染料NK3041染色,电刺激与脑片相连的位听神经残端.使用16×16像素的硅光电二极管阵列测量光学信号.所采集的数据使用ARGUS50/PDA软件分析.结果多部位的光学记录方法显示了从位听神经到耳蜗核和前庭核的兴奋性传导的时间-空间分布.其中每一个光学成分由快峰电位样反应和慢反应组成.抑制性神经递质GABA可降低诱发的光学信号的快反应和慢反应,GABAA受体拮抗剂荷包牡丹碱可增强这些反应.结论16×16像素的硅光电二极管阵列可记录位听神经刺激诱发的多部位光学信号,每一个光学信号含有突触前及突触后电位成分.抑制性神经递质GABA和GJBAA受体拮抗剂可调节光学信号的兴奋性传导. 相似文献
12.
Tom Rouwette Luca Avenali Julia Sondermann Pratibha Narayanan David Gomez-Varela Manuela Schmidt 《Channels (Austin, Tex.)》2015,9(4):175-185
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. 相似文献
13.
《Channels (Austin, Tex.)》2013,7(4):175-185
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. 相似文献
14.
Pulmonary expression of voltage-gated calcium channels: special reference to sensory airway receptors 总被引:1,自引:2,他引:1
De Proost I Brouns I Pintelon I Timmermans JP Adriaensen D 《Histochemistry and cell biology》2007,128(4):301-316
Studying depolarisation induced calcium entry in our recently developed in situ lung slice model for molecular live cell imaging of selectively visualised pulmonary neuroepithelial bodies (NEBs), exemplified the need for information on the localisation of voltage-gated calcium channels (Ca(v)) in lungs in general, and related to sensory airway receptors more specifically. The present study therefore aimed at identifying the expression pattern of all major classes and subtypes of Ca(v) channels, using multiple immunostaining of rat lung cryosections. Ca(v) channel antibodies were combined with antibodies that selectively label NEBs, nerve fibre populations, smooth muscle, endothelium and Clara cells. Ca(v)2.1 (P/Q-type) was the only Ca(v) channel expressed in NEB cell membranes, and appeared to be restricted to the apical membrane of the slender NEB cell processes that reach the airway lumen. Subpopulations of the vagal but not the spinal sensory nerve fibres that contact NEBs showed immunoreactivity (IR) for Ca(v)1.2 (L-type) and Ca(v)2.1. Ca(v)2.3 (R-type) was selectively expressed by the so-called Clara-like cells that cover NEBs only, and appears to be a unique marker to discriminate this epithelial cell type from the much more extensive group of Clara cells in rat airways. The laminar nerve endings of smooth muscle-associated airway receptors (SMARs) revealed IR for both Ca(v)2.1 and Ca(v)2.2 (N-type). More generally, Ca(v)1.2 was seen to be expressed in vascular smooth muscle, Ca(v)2.3 and Ca(v)3.1 (T-type) in bronchial smooth muscle, Ca(v)3.1 and Ca(v)3.2 (T-type) in endothelial cells, and Ca(v)1.3 (L-type) in a limited number of epithelial cells. In conclusion, the present immunocytochemical study has demonstrated that the various subtypes of Ca(v) channels have distinct expression patterns in rat lungs. Special focus on morphologically/neurochemically characterised sensory airway receptors learned us that both NEBs and SMARs present Ca(v) channels. Knowledge of the identification and localisation of Ca(v) channels in airway receptors and surrounding tissues provides a solid basis for interpretation of the calcium mediated activation studied in our ex vivo lung slice model. 相似文献
15.
Cho S Kim S Jin Z Yang H Han D Baek NI Jo J Cho CW Park JH Shimizu M Jin YH 《Biochemical and biophysical research communications》2011,(4):637-642
Isoliquiritigenin (ILTG) is a chalcone compound and has valuable pharmacological properties such as antioxidant, anti-inflammatory, anticancer, and antiallergic activities. Recently, the anxiolytic effect of ILTG has been reported; however, its action mechanism and hypnotic activity have not yet been demonstrated. Therefore, we investigated the hypnotic effect and action mechanism of ILTG. ILTG significantly potentiated the pentobarbital-induced sleep in mice at doses of 25 and 50 mg/kg. The hypnotic activity of ILTG was fully inhibited by flumazenil (FLU), a specific gamma-aminobutyric acid type A (GABAA)–benzodiazepine (BZD) receptor antagonist. The binding affinity of ILTG was 0.453 μM and was found to be higher than that of the reference compound, diazepam (DZP, 0.012 μM). ILTG (10−5 M) potentiated GABA-evoked currents to 151% of the control level on isolated dorsal raphe neurons. ILTG has 65 times higher affinity for GABAA–BZD receptors than DZP, and the dissociation constant for ILTG was 4.0 × 10−10 M. The effect of ILTG on GABA currents was blocked by 10−7 M FLU and ZK-93426. These results suggest that ILTG produces hypnotic effects by positive allosteric modulation of GABAA–BZD receptors. 相似文献
16.
Stimulus-induced exocytosis of large dense-core vesicles (LDCVs) leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism. Liquid chromatography-mass spectrometry combined with immunoblotting of subcellular fractions identified 298 proteins in LDCV membranes purified from the dorsal spinal cord, including G-protein-coupled receptors, G-proteins and other signaling molecules, ion channels and trafficking-related proteins. Morphological assays showed that δ-opioid receptor 1 (DOR1), β2 adrenergic receptor (AR), G(αi2), voltage-gated calcium channel α2δ1 subunit and P2X purinoceptor 2 were localized in substance P (SP)-positive LDCVs in small-diameter dorsal root ganglion neurons, whereas β1 AR, Wnt receptor frizzled 8 and dishevelled 1 were present in SP-negative LDCVs. Furthermore, DOR1/G(αi2)/G(β1γ5)/phospholipase C β2 complexes were associated with LDCVs. Blockade of the DOR1/G(αi2) interaction largely abolished the LDCV localization of G(αi2) and impaired stimulation-induced surface expression of G(αi2). Thus, LDCVs serve as carriers of receptors, ion channels and preassembled receptor signaling complexes, enabling a rapid, activity-dependent modulation of neuronal sensitivity. 相似文献
17.
Neuronal nicotinic acetylcholine receptors (nAChR) can regulate several neuronal processes through Ca2+-dependent mechanisms. The versatility of nAChR-mediated responses presumably reflects the spatial and temporal characteristics of local changes in intracellular Ca2+ arising from a variety of sources. The aim of this study was to analyse the components of nicotine-evoked Ca2+ signals in SH-SY5Y cells, by monitoring fluorescence changes in cells loaded with fluo-3 AM. Nicotine (30 microm) generated a rapid elevation in cytoplasmic Ca2+ that was partially and additively inhibited (40%) by alpha7 and alpha3beta2* nAChR subtype selective antagonists; alpha3beta4* nAChR probably account for the remaining response (60%). A substantial blockade (80%) by CdCl2 (100 microm) indicates that voltage-operated Ca2+ channels (VOCC) mediate most of the nicotine-evoked response, although the alpha7 selective antagonist alpha-bungarotoxin (40 nm) further decreased the CdCl2- resistant component. The elevation of intracellular Ca2+ levels provoked by nicotine was sustained for at least 10 min and required the persistent activation of nAChR throughout the response. Intracellular Ca2+ stores were implicated in both the initial and sustained nicotine-evoked Ca2+ responses, by the blockade observed after ryanodine (30 microm) and the inositoltriphosphate (IP3)-receptor antagonist, xestospongin-c (10 microm). Thus, nAChR subtypes are differentially coupled to specific sources of Ca2+: activation of nAChR induces a sustained elevation of intracellular Ca2+ levels which is highly dependent on the activation of VOCC, and also involves Ca2+ release from ryanodine and IP3-dependent intracellular stores. Moreover, the alpha7, but not alpha3beta2* nAChR, are responsible for a fraction of the VOCC-independent nicotine-evoked Ca2+ increase that appears to be functionally coupled to ryanodine sensitive Ca2+ stores. 相似文献
18.
The effects of acute and chronic administration of diisopropylfluorophosphate (DFP) to rats on acetylcholinesterase (AChE) activity (in striatum, medulla, diencephalon, cortex, and medulla) and muscarinic, dopamine (DA), and gamma-aminobutyric acid (GABA) receptor characteristics (in striatum) were investigated. After a single injection of (acute exposure to) DFP, striatal region was found to have the highest degree of AChE inhibition. After daily DFP injections (chronic treatment), all brain regions had the same degree of AChE inhibition, which remained at a steady level despite the regression of the DFP-induced cholinergic overactivity. Acute administration of DFP increased the number of DA and GABA receptors without affecting the muscarinic receptor characteristics. Whereas chronic administration of DFP for either 4 or 14 days reduced the number of muscarinic sites without affecting their affinity, the DFP treatment caused increase in the number of DA and GABA receptors only after 14 days of treatment; however, the increase was considerably lower than that observed after the acute treatment. The in vitro addition of DFP to striatal membranes did not affect DA, GABA, or muscarinic receptors. The results indicate an involvement of GABAergic and dopaminergic systems in the actions of DFP. It is suggested that the GABAergic and dopaminergic involvement may be a part of a compensatory inhibitory process to counteract the excessive cholinergic activity produced by DFP. 相似文献
19.
In addition to progressive dementia, Alzheimer's disease (AD) is characterized by increased incidence of seizure activity. Although originally discounted as a secondary process occurring as a result of neurodegeneration, more recent data suggest that alterations in excitatory-inhibitory (E/I) balance occur in AD and may be a primary mechanism contributing AD cognitive decline. In this study, we discuss relevant research and reports on the GABA(A) receptor in developmental disorders, such as Down syndrome, in healthy aging, and highlight documented aberrations in the GABAergic system in AD. Stressing the importance of understanding the subunit composition of individual GABA(A) receptors, investigations demonstrate alterations of particular GABA(A) receptor subunits in AD, but overall sparing of the GABAergic system. In this study, we review experimental data on the GABAergic system in the pathobiology of AD and discuss relevant therapeutic implications. When developing AD therapeutics that modulate GABA it is important to consider how E/I balance impacts AD pathogenesis and the relationship between seizure activity and cognitive decline. 相似文献
20.
Cunha AO Mortari MR Oliveira L Carolino RO Coutinho-Netto J dos Santos WF 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2005,141(1):50-57
Venoms of spiders and wasps are well recognized to present high affinity to the central nervous tissue of many mammalian species. Here we describe the effects of direct exposure of rat (Rattus norvegicus) brains to the crude and denatured venom of the Brazilian social wasp Polybia ignobilis. Lower doses of crude venom injected via intracerebroventricular (i.c.v.) inhibited the exploratory activity of animals, while higher doses provoked severe generalized tonic-clonic seizures, with hind limb extension. The status epilepticus lasted for few minutes leading the animals to respiratory depression and death. In contrast, the denatured venom was anticonvulsant against acute seizures induced by the i.c.v. injection of bicuculline, picrotoxin and kainic acid, but it was ineffective against seizures caused by systemic pentylenetetrazole. Moreover, the [3H]-glutamate binding in membranes from rat brain cortex was inhibited by the denatured venom in lower concentrations than the [3H]-GABA binding. The denatured venom contains free GABA and glutamate (34 and 802 pg/microg of venom, respectively), but they are not the major binding inhibitors. These interactions of venom components with GABA and glutamate receptors could be responsible for the anticonvulsant effects introducing the venom from P. ignobilis as a potential pharmacological source of anticonvulsant drugs. 相似文献