首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine cryptophyte Pyrenomonas salina Santore is capable of autotrophic and heterotrophic nutrition. We studied the physiological and ultrastructural changes that accompany the shift between these nutritional modes. The addition of glycerol to batch cultures of P. salina, grown at an irradiance limiting for photoautotrophic growth, increased its growth rate and induced specific biochemical and structural changes in its photosynthetic system. Results from extracted pigment analyses, thin-section electron microscopy, and freeze-fracture electron microscopy indicated that glycerol addition reduced the cell phycoerythrin content, phycoerythrin to chlorophyll a ratio, degree of thylakoid packing, number of thylakoids · cell?1, and PSII particle size. These properties were reduced to a similar extent in cells grown photoautotrophically under an irradiance saturating for growth. These results are consistent with the hypothesis that enhancement of heterotrophic potential occurs at the expense of light-harvesting ability in glycerol-grown P. salina.  相似文献   

2.
During a transition from high growth irradiance (700 micromoles quanta per square meter per second) to low growth irradiance (70 micromoles quanta per square meter per second), the unicellular marine chlorophyte Dunaliella tertiolecta Butcher increases the cellular pool size of the light-harvesting complex of photosystem II (LHC II). We showed that the increase in LHC II apoproteins and in chlorophyll content per cell is preceded by an approximately fourfold increase in cab mRNA. The increase in cab mRNA is detectable within 1.5 hours following a shift from high to low light intensity. An increase in the relative abundance of cab mRNA was also found following a shift from high light to darkness and from high light to low light in the presence of gabaculine, a chlorophyll synthesis inhibitor. However, the LHC II apoproteins did not accumulate in the latter experiments, suggesting that LHC II apoprotein synthesis is coupled to chlorophyll synthesis at or beyond translation. We propose that changes in energy balance brought about by a change in light intensity may control a regulatory factor acting to repress cab mRNA expression in high light.  相似文献   

3.
Structural and functional alterations to the photosynthetic apparatus after growth at low temperature (5[deg]C) were investigated in the green alga Chlorella vulgaris Beijer. Cells grown at 5[deg]C had a 2-fold higher ratio of chlorophyll a/b, 5-fold lower chlorophyll content, and an increased xanthophyll content compared to cells grown at 27[deg]C even though growth irradiance was kept constant at 150 [mu]mol m-2 s-1. Concomitant with the increase in the chlorophyll a/b ratio was a lower abundance of light-harvesting polypeptides in 5[deg]C-grown cells as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by western blotting.The differences in pigment composition were found to be alleviated within 12 h of transferring 5[deg]C-grown cells to 27[deg]C. Furthermore, exposure of 5[deg]C-grown cells to a 30-fold lower growth irradiance (5 [mu]mol m-2 s-1) resulted in pigment content and composition similar to that in cells grown at 27[deg]C and 150 [mu]mol m-2 s-1. Although both cell types exhibited similar measuring-temperature effects on CO2-saturated O2 evolution, 5[deg]C-grown cells exhibited light-saturated rates of O2 evolution that were 2.8-and 3.9-fold higher than 27[deg]C-grown cells measured at 27[deg]C and 5[deg]C, respectively. Steady-state chlorophyll a fluorescence indicated that the yield of photosystem II electron transport of 5[deg]C-grown cells was less temperature sensitive than that of 27[deg]C-grown cells. This appears to be due to an increased capacity to keep the primary, stable quinone electron acceptor of photosystem II (QA) oxidized at low temperature in 5[deg]C- compared with 27[deg]C-grown cells regardless of irradiance. We conclude that Chlorella acclimated to low temperature adjusts its photosynthetic apparatus in response to the excitation pressure on photosystem II and not to the absolute external irradiance. We suggest that the redox state of QA may act as a signal for this photosynthetic acclimation to low temperature in Chlorella.  相似文献   

4.
The physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to sudden changes in irradiance from high (HL) to low light (LL) and vice versa was studied by following parameters concerning growth rate, pigment, carbohydrate and protein cell contents. Applying first order kinetics, the specific acclimation rates for the parameters considered were calculated. During HL to LL shift, pigments increased to compensate for a reduction in growth irradiance in order to maintain relatively high growth rates, whereas carbohydrates decreased at the highest rate. The synthesis of phycobiliproteins proceeded at a rate similar or little higher than that of chlorophyll a, indicating their importance in the light harvesting at low irradiance. During LL to HL shift, carbohydrate biosynthesis was increased, whereas pigment and protein cell contents decreased. The kinetic analysis suggested that the pigment decrease could be accounted for both by dilution through growth and in vivo degradation. During this transition, the initially high cell pigment content gave rise to a very heavy carbohydrate synthesis, which for a short time, after the shift to HL conditions, overshot the final steady-state. In the same period the specific growth rate also increased notably, overshooting the μmax. The acclimation rates of the measured parameters were faster during LL to HL transition then during the reverse. The physiological response of A. maxima during the acclimation to sudden irradiance shifts points out the ability of this cyanobacterium to alter light harvesting and highlights again the key role of carbohydrates when the cells underwent an energy crisis during down-shift. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
以0.1、0.3和0.5mmol.L^-1的水杨酸预处理灌浆期的小麦叶片,测定在高温强光胁迫下小麦叶绿体基因psbA表达、D1蛋白含量和PSII功能。结果表明,叶面喷施SA不仅可减缓高温强光对psbA表达的抑制,而且可促进胁迫后在适宜光温条件下恢复表达的水平。  相似文献   

6.
The photosynthetic acclimation of Tradescantia albiflora (Kunth), a trailing ground species naturally occurring in the deep shade of rainforests, was studied in relation to growth irradiance (glasshouse; direct light and 1 to 4 layers of shade cloth, giving 100 to 1.4% relative growth irradiance). Contrary to other irradiance studies of higher plants grown in natural habitats or controlled light environments, the chlorophyll a/b ratios of Tradescantia leaves were low (∼2.2) and constant. Acclimation to growth irradiance caused no changes in the relative amounts of specific Chl-proteins or the numbers of photosystem I (PSI) and PSII reaction centres on a chlorophyll basis, indicating that the light-harvesting antenna sizes of PSII and PSI, as well as the photosystem stoichiometry, were independent of growth irradiance. However, the amount of cytochrome f and ATP synthase on a chlorophyll basis increased with increasing the relative growth irradiance from 1.4 to 35%, showing acclimation of electron transport and photophosphorylation capacity. The photosynthetic capacity and ribulose 1, 5-bisphosphate carboxylase (EC 4.1.1.39) activity also increased with increase of the growth irradiance to 35%. Beyond that, the inflexible PSII/PSI stoichiometry and shade-type photosystem II/light-harvesting units in Tradescaniia are a disadvantage for long-term exposure to high irradiance since the leaves are more prone to photoinhibition.  相似文献   

7.
The xanthophycean alga Pleurochloris meiringensis was homocontinuously cultured under high light (16 W/m2) and low light (2 W/m2) conditions. In low light cells, the chlorophyll a content and the dry weight on per cell basis is increased, the maximal photosynthetic capacity per chlorophyll is decreased. The content of chlorophyll c, vaucheriaxanthin-ester and heteroxanthin is similar in both cultures, whereas the content of diadinoxanthin and ß-carotene is twice as high in high light cultures. High light cells contain more photosystem I and cytochrome f per chlorophyll than low light cells, whereas the QB content is found to be unchanged. Therefore, the ratio reaction center II/reaction center I is twofold higher in low light cells than in high light ones. The regulation of energy distribution between the photosystems is examined by fluorescence emission spectra at 77 K scanned after different preillumination of the cells. No wavelength dependent state I/state II transition can be detected. However, P. meiringensis regulates the energy distribution in response to light intensity: The higher the irradiance of preillumination, the higher the energy transfer to photosystem I. The sensitivity of the regulation to light intensity is increased in low light cells.  相似文献   

8.
Prochlorococcus and Synechococcus picocyanobacteria are dominant contributors to marine primary production over large areas of the ocean. Phytoplankton cells are entrained in the water column and are thus often exposed to rapid changes in irradiance within the upper mixed layer of the ocean. An upward fluctuation in irradiance can result in photosystem II photoinactivation exceeding counteracting repair rates through protein turnover, thereby leading to net photoinhibition of primary productivity, and potentially cell death. Here we show that the effective cross-section for photosystem II photoinactivation is conserved across the picocyanobacteria, but that their photosystem II repair capacity and protein-specific photosystem II light capture are negatively correlated and vary widely across the strains. The differences in repair rate correspond to the light and nutrient conditions that characterize the site of origin of the Prochlorococcus and Synechococcus isolates, and determine the upward fluctuation in irradiance they can tolerate, indicating that photoinhibition due to transient high-light exposure influences their distribution in the ocean.  相似文献   

9.
Tadmor is a Syrian barley landrace that has adapted to semi-arid environments. Its leaves are pale green because of a 30% decrease in the chlorophyll and the carotenoid content of the chloroplasts (leading to a 7·5% decrease in light absorption) compared with barley genotypes that are not adapted to harsh Mediterranean climatic conditions (e.g. Plaisant). This difference in pigment content was attenuated during growth of the plants in strong light, but was strongly amplified when strong light was combined with a high growth temperature. The low pigment content of Tadmor leaves was not associated with significant changes in the pigment distribution between the photosystems or between the reaction centres of the photosystems and their associated chlorophyll antennae. No significant difference in the photosynthetic activity (O2 production per unit absorbed light) was observed between Tadmor and Plaisant. The conversion of violaxanthin to zeaxanthin in strong light and its reversal in darkness were much faster and operated at a higher capacity in Tadmor leaves compared with Plaisant leaves, resulting in an increased photostability of photosystem II in the former leaves. The accelerated xanthophylls interconversion in the Syrian landrace was associated with, and possibly related to, an increased fluidity of the thylakoid membranes. The lipid peroxide level was lower in Tadmor compared with Plaisant. In contrast, no difference was found in the non-photochemical quenching of chlorophyll fluorescence between the two barley genotypes. The data indicate that the pale green Syrian landrace is equipped to survive excessive irradiance through a passive reduction of the light absorptance of its leaves, which mitigates the heating effects of strong light, and through the active protection of its photochemical apparatus by a rapid xanthophyll cycling.  相似文献   

10.
Under stress conditions, some microalgae up-regulate certain biosynthetic pathways, leading to the accumulation of specific compounds. For example, changing nutrient composition can induce stress in algae’s physiological activities, which may trigger an intense increase in carotenoid production. In this study, the change of photosynthetic functions and carotenoid production in the green microalga Scenedesmus sp. was investigated when algal cultures were exposed to conditions including limited nitrogen content with the addition of sodium acetate. Microalgal cultures were treated for 18 days under higher irradiance conditions. We observed a decrease of chlorophyll content induced concomitantly with a decline of photosystem II and I photochemistry. At the same time, an important increase in carotenoid content was detected. By using high-performance liquid chromatographic analysis, we found that the secondary carotenoids astaxanthin and canthaxanthin were accumulated compared to controls. During the process of carotenoid accumulation, chlorophyll degradation was found in addition to a strong decrease in photosynthetic electron transport. Such changes may be associated with the structural reorganization of the photosynthetic apparatus and can be a useful indicator of secondary carotenoid accumulation in algal cultures.  相似文献   

11.

Chl, chlorophyll
Chl a/b, ratio of chlorophyll a to chlorophyll b
Cyt f, cytochrome f
FR, far-red light
LFR, low irradiance, far-red enriched growth light
LHCII, light harvesting complex associated with PSII
LW, low irradiance, white growth light
MW, moderate irradiance, white growth light
PAR, photosynthetically active radiation
Pmax, light and CO2 saturated photosynthetic rate
PSI, photosystem I
PSII, photosystem II

Four plant species (Chamerion angustifolium, Digitalis purpurea, Brachypodium sylvaticum and Plantago lanceolata) which have previously been shown to demonstrate contrasting photosynthetic acclimatory responses to the light environment ( 33 , Plant, Cell and Environment 20, pp. 438–448) were analysed at a biochemical level. Plants were grown under low irradiance with a shade-type spectrum (LFR: 50μmol quanta m–2 s–1), moderately high white light (MW: 300μmol quanta m–2 s–1) and low irradiance white light (LW: 50μmol quanta m–2 s–1). The effects of light quality upon chlorophyll content and photosynthetic capacity were found to be species-dependent. A far-red dependent reduction in chlorophyll was found in three species, and an irradiance-dependent reduction was found in B. sylvaticum, which showed the greatest alteration in the xanthophyll cycle pool size of all species tested under these conditions. Chlorophyll a/b ratios were sensitive to both light quality and quantity in C. angustifolium and D. purpurea, being highest in MW, lowest in LFR, and intermediate in LW, whilst the other species showed no response. Ratios of photosystem II to photosystem I (PSII and PSI) demonstrated a strong irradiance-associated increase in all species except B. sylvaticum, whereas an increase in PSII/PSI in LFR compared to LW conditions was present in all species. A change in chlorophyll a/b was not always associated with a change in PSII/PSI, suggesting that the level of LHCII associated with each PSII varied in some species. Cytochrome f content showed an irradiance-dependent effect only, indicating a relationship with the capacity of electron transport. It is concluded that differing strategies of acclimation to the light environment demonstrated by these species results from differing strengths of expression of a series of independently regulated changes in the levels of photosynthetic components.  相似文献   

12.
In cyanobacteria, the interactions among pigment–protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions.  相似文献   

13.
Photosystem II (PSII) from Cu-deficient pea plants ( Pisum sativum L., cv. Lincoln) has been investigated for electron transport activity, Cu content, and changes in some lipid components. Total fatty acid content was lower that in control plants, with an additional shift in the C18 fatty acid patterns. Less α-linolenic and more linoleic and oleic acids were found. PSII preparations from Cu-depleted plants showed a decreased carotenoid content in light harvesting chlorophyll a/b complex of photosystem II (LHCII) and additional variations in pigment composition of pigment-protein complexes. In the green alga Dunaliella the effect of Cu deficiency on fatty acid composition was similar to that in pea plants, but the influence on the carotenoid pattern was much less pronounced.  相似文献   

14.
Mosses are important ecosystem engineers in mires. Their existence may be threatened directly or indirectly by anthropogenic drying, which further leads to shading and changed competition conditions via increased arboreal plant cover. Yet, some species are able to acclimate to the changing habitat, while some give way to new colonizers. In the shaded conditions, acclimation or adaptation to low light levels is likely to be a winning strategy to survive. We studied the light responses of photosynthesis and photosynthetic pigment concentrations in mosses from an open mire and its shaded, i.e. drained and forested counterpart. Against our expectations, the Sphagnum species found only in the open habitat had lower photosynthetic capacity and maximum quantum yield than those found to grow in the shade. Chlorophyll fluorescence results suggested that photoinhibitory damage to photosystem II is responsible for the low photosynthetic performance of the Sphagna of the open habitat, which were inefficient to utilize any light level. In the shaded habitat, Sphagnum mosses showed adaptation to lower light conditions only by possessing a higher chlorophyll content. Pleurozium schreberi reached photosynthetic light saturation at half the irradiance level compared to Sphagna. The lack of efficient photoprotection or repair mechanism after photodamage may constrain the success of these species in the open habitat. Thus, the dominant Sphagna in the open pristine conditions seem to be stress tolerant, while the dominants of the shaded drained mire appear to be species capable of maximizing their growth and production to compete in the unstressful conditions in terms of light and desiccation.  相似文献   

15.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

16.
Photosynthetic acclimation to temperature and irradiance was studied in the filamentous, non-heterocystous cyanobacterium Plectonema boryanum UTEX 485. Growth rates of this cyanobacterium measured at ambient CO2 were primarily influenced by temperature with minimal effects of irradiance. Both growth temperature and irradiance affected linolenic (18:3) and linoleic acid (18:2) levels in the four major lipid classes in an independent but additive manner. In contrast, photosynthetic acclimation was not due to either growth temperature or irradiance per se, but rather, due to the interaction of these environmental factors. P. boryanum grown at low temperature and moderate irradiance mimicked cells grown at high light. Compared to cells grown at either 29 degrees C/150 micromol m(-2) s(-1) (29/150) or 15/10, P. boryanum grown at either 15/150 or 29/750 exhibited: (1) reduced cellular levels of Chl a and phycobilisomes (PBS), and concomitantly higher content of an orange-red carotenoid, myxoxanthophyll; (2) higher light saturated rates (Pmax) when expressed on a Chl a basis but lower apparent quantum yields of oxygen evolution and (3) enhanced resistance to high light stress. P. boryanum grown at 15/150 regained normal blue-green pigmentation within 16 h after a temperature shift to 29 degrees C at a constant irradiance of 150 micromol m(-2) s(-1). DBMIB and KCN but not DCMU and atrazine partially inhibited the change in myxoxanthophyll/Chl a ratio following the shift from 15 to 29 degrees C. We conclude that P. boryanum responds to either varying growth temperature or varying growth irradiance by adjusting the ability to absorb light through decreasing the cellular contents of Chl a and light-harvesting pigments and screening of excessive light by myxoxanthophyll predominantly localized in the cell wall/cell membrane to protect PSII from over-excitation. The possible role of redox sensing/signalling for photosynthetic acclimation of cyanobacteria to either temperature or irradiance is discussed.  相似文献   

17.
Low temperature (77°K) fluorescence emission and excitation spectra were recorded for wet and desiccated thalli of Porphyra perforata . The photosystem I (F730) and photosystem II (F695) fluorescence emission kinetics during photosystem II trap closure were also recorded at 77°K. Desiccation induced a lowering of the fluorescence yield over the whole emission spectrum but the decrease was most pronounced for the photosystem II fluorescence bands, F688 and F695. It was shown that the desiccation-induced changes of the phycoerythrin sensitized emission spectrum were due to 1) a decrease in the fluorescence yield of the photosystem I antenna, 2) an even stronger decrease in the fluorescence of photosystem II, which was mediated by an increased spillover (kT(II→I)) of excitation to photosystem I and an increase in the absorption cross section, α, for photosystem I. We hypothesize that the increase of both kT(II→I) and α are part of a mechanism by which the desiccation-tolerant, high light exposed, Porphyra can avoid photodynamic damage to photosystem II, when photosynthesis becomes inhibited as a result of desiccation during periods of low tide.  相似文献   

18.
Photosynthetic energy conversion was investigated in five species of marine unicellular algae, (Dunaliella tertiolecta, Thalassiosira pseudonana, T. weisflogii, Skeletorema costatum, Isochrysis galbana) representing three phylogenetic classes, which were grown under steady state conditions with either light or inorganic nitrogen as a limiting factor. Using a pump and probe fluorescence technique we measured the maximum change in variable fluorescence yields, the flash intensity saturation curves for the change in fluorescence yields and the kinetics of the decay in fluorescence yields. Under all growth irradiance levels nutrient replete cells exhibited approximately the same changes in fluorescence yields and similar fluorescence decay kinetics. The apparent relative absorption cross-section of photosystem II, calculated from the slope of the flash intensity saturation curves, generally increased as cells shade adapted. The decay kinetics of the fluorescence yield following a saturating pump flash can be expressed as the sum of three exponential components, with half-times of 160 and 600 microseconds and 30 to 300 milliseconds. The relative contribution of each component did not change significantly with growth irradiance. As cells became more nitrogen limited, however, the maximum change in fluorescence yield decreased, and was accompanied by a decrease in the proportion of a 160 microsecond fluorescence decay component, which corresponds to the transfer of electrons from Qa to Qb. Changes in fluorescence yields were also accompanied by changes in the levels of D1, a protein which is integral in reaction center II, and CP47, a chlorophyll protein forming part of the core of photosystem II. These results are consistent with a loss of functional photosystem II reaction centers. Moreover, in spite of losses of total cellular chlorophyll, which invariably accompanied nitrogen limitation, the apparent absorption cross-sections of photosystem II increased. Our results suggest that nitrogen limitation leads to substantial decreases in photosynthetic energy conversion efficiency.  相似文献   

19.
Homocontinuous cultures of the cyanobacterium Anacystis nidulans (syn. Synechococcus sp. PCC 6301) were grown at white light intensities of 2 and 20 W/m2, and supplied with 0.03 and 3 % CO2 enriched air. The mutual influence of these growth factors on the development of the photosynthetic apparatus was studied by analyses of the pigment content, by low temperature absorbance and fluorescence spectroscopy, by analyses of oxygen evolution light-saturation curves, and by SDS PAGE of isolated phycobilisomes. The two growth factors, light and CO2, distinctly affect the absorption cross section of the photosynthetic apparatus, which is expressed by its pigment pattern, excitation energy distribution and capacity. In response to low CO2 concentrations, the phycocyanin / allophycocyanin ratios were lower and one linker polypeptide L30R, of the phycobilisomes was no longer detectable in SDS PAGE. Apparently, low CO2 adaptation results in shorter phycobilisome rods. Specifically, upon adaptation to low light intensities, the chlorophyll and the phycocyanin content on a per cell basis increase by about 50% suggesting a parallel increase in the amount of phycobilisomes and photosystem core-complexes. Low light adaptation and low CO2 adaptation both cause a shift of the excitation energy distribution in favor of photosystem I. Variations in the content of the “anchor” polypeptides L60CM and L75CM are possibly related to changes in the excitation energy transfer from phycobilisomes to the photosystem II and photosystem I core-complexes.  相似文献   

20.
The formation of chlorophyll, cytochrome f, P-700, ribulose bisphosphate carboxylase as well as photosynthesis and Hill reaction activities were tested during the light-dependent greening process of the Chlorella fusca mutant G 10. Neither chlorophyll nor protochlorophyllide was detected in the darkgrown cells. When transferred to light the mutant cells developed chlorophyll and established its photosynthetic capacity after a short lag phase. In the in vivo absorption spectra a spectral shift of the red absorption peak position from 674 to 680 nm was indicated during the first 3 h of greening. Cytochrome f was already present in the dark-grown cells, but during the greening phase a threefold increase in the cytochrome f content could be seen. At the early stages of greening a characteristic primary oscillation in the content of cytochrome f was observed. P-700 was lacking in the dark and during the first 30 min of illumination. From the first to the second h of light a forced synthesis of P-700 took place and the time-course curve for the ratios of P-700/chlorophyll rose to a sharp maximum. The synthesis of P-700 started together with photosystem I activity and showed similar kinetics. We found the simultaneous appearance of photosystem II, photosystem I, and photosynthetic activities 30 min after the beginning of the illumination. Based on chlorophyll content they attained maximum activity after 2 h of light, but at this time photosystem I capacity proved to be remarkably higher than photosynthetic and photosystem II activities. Highest carboxylase activity existed in darkgrown cells. During the greening process the activity of the enzyme decreased continuously. After 2 h of illumination chlorophyll synthesis partially served to increase the size of the photosynthetic unit, which consequently led to a decrease in the light energy needed to saturate photosynthesis and also to a decrease of photosynthetic rate based on chlorophyll content.Abbreviations Chl chlorophyll - Cyt f cytochrome f - DPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - GSH glutathione - LH light-harvesting - PS photosystem - RuBP ribulose bisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号