首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
Proteins destined for either the periplasm or the outer membrane of Escherichia coli are translocated from the cytoplasm by a common mechanism. It is generally assumed that outer membrane proteins, such as LamB (maltoporin or lambda receptor), which are rich in beta-structure, contain additional targeting information that directs proper membrane insertion. During transit to the outer membrane, these proteins may pass, in soluble form, through the periplasm or remain membrane associated and reach their final destination via sites of inner membrane-outer membrane contact (zones of adhesion). We report lamB mutations that slow signal sequence cleavage, delay release of the protein from the inner membrane, and interfere with maltoporin biogenesis. This result is most easily explained by proposing a soluble, periplasmic LamB assembly intermediate. Additionally, we found that such lamB mutations confer several novel phenotypes consistent with an abortive attempt by the cell to target these tethered LamB molecules. These phenotypes may allow isolation of mutants in which the process of outer membrane protein targeting is altered.  相似文献   

2.
LamB protein is involved in the transport of maltose across the outer membrane and constitutes the receptor for phage lambda. In this study we characterized six previously described anti-LamB monoclonal antibodies (mAbs). Four of these, the E-mAbs, recognized determinants that were exposed at the cell surface, whereas the other two, the I-mAbs, recognized determinants which were not exposed. Competition experiments demonstrated that the domains recognized by these two classes of mAbs were completely distinct. In addition, the E-mAbs prevented LamB from neutralizing phage lambda in vitro and protected LamB against proteolytic degradation, whereas the I-mAbs had no such effects. The E-mAbs have been shown previously to constitute two classes: some E-mAbs inhibit maltose transport in vivo, and others do not. Immunoelectron microscopy demonstrated that the I-mAbs also define at least two types of determinants. One of these, which is accessible in membrane fragments from a mutant (lpp) devoid of lipoprotein but not in membrane fragments from an lpp+ strain, probably corresponds to a region of LamB that is involved in the interactions with peptidoglycan. The other determinant, which is fully accessible in LamB-peptidoglycan complexes and in LamB-containing phospholipid vesicles but only slightly accessible in membrane fragments from an lpp mutant, is probably located very close to the inner surface of the outer membrane. LamB also contains at least one additional determinant, which (i) is exposed at the inner surface of the membrane, (ii) is accessible to antibodies in membrane fragments from an lpp+ strain, and (iii) may be involved in the interaction of LamB with the periplasmic maltose-binding protein.  相似文献   

3.
Bacteriophage lambda adsorbs to its Escherichia coli K-12 host by interacting with LamB, a maltose- and maltodextrin-specific porin of the outer membrane. LamB also serves as a receptor for several other bacteriophages. Lambda DNA requires, in addition to LamB, the presence of two bacterial cytoplasmic integral membrane proteins for penetration, namely, the IIC(Man) and IID(Man) proteins of the E. coli mannose transporter, a member of the sugar-specific phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS transporters for mannose of E. coli, for fructose of Bacillus subtilis, and for sorbose of Klebsiella pneumoniae were shown to be highly similar to each other but significantly different from other PTS transporters. These three enzyme II complexes are the only ones to possess distinct IIC and IID transmembrane proteins. In the present work, we show that the fructose-specific permease encoded by the levanase operon of B. subtilis is inducible by mannose and allows mannose uptake in B. subtilis as well as in E. coli. Moreover, we show that the B. subtilis permease can substitute for the E. coli mannose permease cytoplasmic membrane components for phage lambda infection. In contrast, a series of other bacteriophages, also using the LamB protein as a cell surface receptor, do not require the mannose transporter for infection.  相似文献   

4.
In order to understand the unusual heat resistance of LamB protein (the outer membrane component of the maltose transport system in Escherichia coli and its receptor for bacteriophage lambda), we investigated the role of its 2 cysteinyl residues. Our studies show that Cys22 and Cys38 form an intrasubunit disulfide bond which contributes to the heat stability of the LamB protein trimer. Physical evidence for the disulfide was obtained by using site-directed mutagenesis to convert Asn36 to Met, which allowed cyanogen bromide cleavage between the 2 cysteines. Upon reduction one of the N36M fragments migrated as two pieces, resolved by two-dimensional polyacrylamide gel electrophoresis. Other mutagenized LamB proteins, in which 1 or both Cys residues were converted to Ser, exhibited a sharp loss of thermal stability. In contrast to wild-type LamB protein trimer, which does not dissociate to monomers even after 60 min at 100 degrees C, only 10-15% of the mutant LamB proteins remain trimeric after boiling 10 min. The disulfide bond in LamB protein is not required for its transport function, since both mutagenized LamB protein and N-ethylmaleimide-labeled LamB protein exhibit normal uptake of sugars in proteoliposomes. Finally, the disulfide bond must not be between subunits of the LamB trimer since reversible dissociation of trimer is achieved by low pH or denaturants in the absence of reducing agent.  相似文献   

5.
Affinity-chromatographic selection on immobilized starch was used to selectively enhance the affinity of the maltodextrin-specific pore protein ( maltoporin , LamB protein, or lambda receptor protein) in the outer membrane of E. coli. Selection strategies were established for rare bacteria in large populations producing maltoporin variants with enhanced affinities for both starch and maltose, for starch but not maltose and for maltose but not starch. Three classes of lamB mutants with up to eight-fold increase in affinity for particular ligands were isolated. These mutants provide a unique range of modifications in the specificity of a transport protein.  相似文献   

6.
The Escherichia coli LamB protein is located in the outer membrane. It is both a component of the maltose and maltodextrin transport system, and the receptor for phages lambda and K10. It is a trimer composed of three identical polypeptide chains, each containing 421 residues. Six independent mutants have been isolated, in which the LamB protein is altered in its interaction with one or more monoclonal antibodies specific for regions of the protein that are exposed at the cell surface. Some of the mutations also altered the binding site for phage lambda. All of the mutations were clustered in the same region of the lamB gene, corresponding to residues 333-394 in the polypeptide. This and previous results strongly suggest that a rather large segment of the LamB polypeptide, extending from residue 315 to 401, is exposed at the outer face of the outer membrane. This segment would bear the epitopes for the four available anti-LamB monoclonal antibodies that react with the cell surface, and part of the binding site for phage lambda.  相似文献   

7.
We previously developed a genetic approach to study, with a single antibody, the topology of the outer membrane protein LamB, an Escherichia coli porin with specificity towards maltodextrins and a receptor for bacteriophage lambda. Our initial procedure consisted of inserting at random the same reporter epitope (the C3 neutralization epitope from poliovirus) into permissive sites of LamB (i.e., sites which tolerate insertions without deleterious effects on the protein activities or the cell). A specific monoclonal antibody was then used to examine the position of the inserted epitope with respect to the protein and the membrane. In the present work, we set up a site-directed procedure to insert the C3 epitope at new sites in order to distinguish between two-dimensional folding models. This allowed us to identify two new surface loops of LamB and to predict another periplasmic exposed region. The results obtained by random and directed epitope tagging are analyzed in light of the recently published X-ray structure of the LamB protein. Study of 23 hybrid LamB-C3 proteins led to the direct identification of five of the nine external loops (L4, L5, L6, L7, and L9) and led to the prediction of four periplasmic loops (I1, I4, I5, and I8) of LamB. Nine of the hybrid proteins did not lead to topological conclusions, and none led to the wrong predictions or conclusions. The comparison indicates that parts of models based on secondary structure predictions alone are not reliable and points to the importance of experimental data in the establishment of outer membrane protein topological models. The advantages and limitations of genetic foreign epitope insertion for the study of integral membrane proteins are discussed.  相似文献   

8.
Translational control of exported proteins in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
We recently described the suppression of export of a class of periplasmic proteins of Escherichia coli caused by overproduction of a C-terminal truncated periplasmic enzyme (GlpQ'). This truncated protein was not released into the periplasm but remained attached to the inner membrane and was accessible from the periplasm. The presence of GlpQ' in the membrane strongly reduced the appearance in the periplasm of some periplasmic proteins, including the maltose-binding protein (MBP), but did not affect outer membrane proteins, including the lambda receptor (LamB) (R. Hengge and W. Boos, J. Bacteriol., 162:972-978, 1985). To investigate this phenomenon further we examined the fate of MBP in comparison with the outer membrane protein LamB. We found that not only localization but also synthesis of MBP was impaired, indicating a coupling of translation and export. Synthesis and secretion of LamB were not affected. The possibility that this influence was exerted via the level of cyclic AMP could be excluded. Synthesis of MBP with altered signal sequences was also reduced, demonstrating that export-defective MBP which ultimately remains in the cytoplasm abortively enters the export pathway. When GlpQ' was expressed in a secA51(Ts) strain, the inhibition of MBP synthesis caused by GlpQ' was dominant over the precursor accumulation usually caused by secA51(Ts) at 41 degrees C. Therefore, GlpQ' acts before or at the level of recognition by SecA. For LamB the usual secA51(Ts) phenotype was observed. We propose a mechanism by which GlpQ' blocks an yet unknown membrane protein, the function of which is to couple translation and export of a subclass of periplasmic proteins.  相似文献   

9.
In this study we demonstrate that most members of the family Enterobacteriaceae possess a maltose-inducible outer membrane protein homologous to the LamB protein of Escherichia coli K-12. These proteins react with polyclonal antibodies raised against the LamB protein of E. coli K-12. We compared the antigenic structure of the LamB protein in members of the family Enterobacteriaceae with six monoclonal antibodies raised against the LamB protein of E. coli K-12. Four of them reacted with epitopes located at the outer face of the membrane, and two reacted with epitopes located at the inner face of the membrane. A great degree of variability was observed for the external epitopes. Even in a single species, such as E. coli, an important polymorphism was present. In contrast, the internal epitopes were more conserved.  相似文献   

10.
We have targeted two foreign B cell antigenic determinants to different locations in the Escherichia coli cell to examine what effect this had on antibody responses elicited by the recombinant bacteria. The two epitopes were the 132-145 peptide from the PreS2 region of hepatitis B virus and the C3 neutralization epitope of poliovirus type 1. They were each expressed in two forms either on the surface, as part of the outer-membrane protein LamB, or soluble in the periplasm, as part of the periplasmic protein MalE. When live bacteria expressing the foreign epitope at the cell surface were used for immunization of mice, they induced T cell-independent antibody responses characterized by a rapid induction of IgM and IgG antibodies. In contrast, when the same foreign epitope was inserted into the MalE protein, the antibody response was only detectable after 3 wk, belonged only to the IgG class and was strictly T cell dependent. This study has therefore identified two major pathways by which epitopes expressed by bacterial cells can stimulate specific antibody responses. The first pathway is mediated by direct activation of B cells by bacterial cell-surface Ag and does not require T cell help. The second pathway is T cell dependent and concerns Ag that can be released from the bacteria in a soluble form. We have also studied the effect of the exact position of the B cell antigenic determinant within the LamB protein and with respect to the outer membrane by comparing the immunogenicity of the PreS epitope inserted at three different permissive sites of LamB. The data indicated that to obtain an antibody response with intact bacteria, the epitope must be protruding sufficiently from the outside of the outer membrane. In contrast, when semipurified hybrid proteins were used as immunogen, the exact position of the B cell antigenic determinant within solubilized LamB protein does not influence its immunogenicity.  相似文献   

11.
In one malE mutant known to be deficient in the transport of maltose and maltodextrins across the outer membrane, the altered MalE protein was shown to be defective in its interaction with the phage lambda receptor, or LamB protein, of the outer membrane.  相似文献   

12.
Yeast (CUP1) and mammalian (HMT-1A) metallothioneins (MTs) have been efficiently expressed in Escherichia coli as fusions to the outer membrane protein LamB. A 65-amino-acid sequence from the CUP1 protein of Saccharomyces cerevisiae (yeast [Y] MT) was genetically inserted in permissive site 153 of the LamB sequence, which faces the outer medium. A second LamB fusion at position 153 was created with 66 amino acids recruited from the form of human (H) MT that is predominant in the adipose tissue, HMT-1A. Both LamB153-YMT and LamB153-HMT hybrids were produced in vivo as full-length proteins, without any indication of instability or proteolytic degradation. Each of the two fusion proteins was functional as the port of entry of lambda phage variants, suggesting maintenance of the overall topology of the wild-type LamB. Expression of the hybrid proteins in vivo multiplied the natural ability of E. coli cells to bind Cd2+ 15- to 20-fold, in good correlation with the number of metal-binding centers contributed by the MT moiety of the fusions.  相似文献   

13.
Four outer membrane proteins of Escherichia coli were examined for their capabilities and limitations in displaying heterologous peptide inserts on the bacterial cell surface. The T7 tag or multiple copies of the myc epitope were inserted into loops 4 and 5 of the ferrichrome and phage T5 receptor FhuA. Fluorescence-activated cell sorting analysis showed that peptides of up to 250 amino acids were efficiently displayed on the surface of E. coli as inserts within FhuA. Strains expressing FhuA fusion proteins behaved similarly to those expressing wild-type FhuA, as judged by phage infection and colicin sensitivity. The vitamin B(12) and phage BF23 receptor BtuB could display peptide inserts of at least 86 amino acids containing the T7 tag. In contrast, the receptors of the phages K3 and lambda, OmpA and LamB, accepted only insertions in their respective loop 4 of up to 40 amino acids containing the T7 tag. The insertion of larger fragments resulted in inefficient transport and/or assembly of OmpA and LamB fusion proteins into the outer membrane. Cells displaying a foreign peptide fused to any one of these outer membrane proteins were almost completely recovered by magnetic cell sorting from a large pool of cells expressing the relevant wild-type platform protein only. Thus, this approach offers a fast and simple screening procedure for cells displaying heterologous polypeptides. The combination of FhuA, along with with BtuB and LamB, should provide a comprehensive tool for displaying complex peptide libraries of various insert sizes on the surface of E. coli for diverse applications.  相似文献   

14.
When Triton X-100/EDTA extracts of the outer membrane of Escherichia coli K12 were passed through a column containing maltose-binding protein covalently linked to Sepharose 6MB beads, the phage lambda receptor protein or LamB protein was quantitatively and specifically adsorbed to the column and was eluted with a solution containing 1 M NaCl, but not with that containing 0.5 M maltose. The binding did not take place when columns containing inactivated Sepharose beads alone, or Sepharose bound to histidine-binding protein of Salmonella typhimurium, were used. This interaction is consistent with the hypothesis that the periplasmic maltose-binding protein interacts with the part of the LamB protein exposed on the inner surface of the outer membrane, thereby increasing the specificity of the solute penetration process through the LamB channel.  相似文献   

15.
In order to identify sequences involved in the localization of LamB, an outer membrane protein from E coli K12, mutagenesis by linker insertion has been performed on a lamB gene copy carried on a plasmid devised for this purpose. An analysis of the first set of 16 clones constructed by this technique shows that, in these clones, the lamB protein is altered either by frameshift mutations leading to abnormal COOH terminal (usually premature termination) or by in-phase deletions or small insertions. Except for two in-phase linker insertions, which only slightly changed the behavior of the protein, the modified proteins are either toxic to cell growth or unstable. In all cases examined so far, the modified proteins were in the outer membrane. We suggest that toxicity is due to incorrect folding, which leads to disruption of the outer membrane. The nature of the genetic alterations leads to the hypothesis that the first 183 amino acids of the LamB mature protein contain, together with the signal sequence, all the instructions needed for proper localization.  相似文献   

16.
A Death  L Notley    T Ferenci 《Journal of bacteriology》1993,175(5):1475-1483
The level of LamB protein in the outer membrane of Escherichia coli was derepressed in the absence of a known inducer (maltodextrins) under carbohydrate-limiting conditions in chemostats. LamB protein contributed to the ability of the bacteria to remove sugar from glucose-limited chemostats, and well-characterized lamB mutants with reduced stability constants for glucose were less growth competitive under glucose limitation than those with wild-type affinity. In turn, wild-type bacteria were less growth competitive than lamB mutants with enhanced sugar affinity. In contrast to an earlier report, we found that LamB- bacteria were less able to compete in carbohydrate-limited chemostats (with glucose, lactose, arabinose, or glycerol as the carbon and energy sources) when mixed with LamB+ bacteria. The transport Km for [14C]glucose was affected by the presence or affinity of LamB, but only in chemostat-grown bacteria, with their elevated LamB levels. The pattern of expression of LamB and the advantage it confers for growth on low concentrations of carbohydrates are consistent with a wider role in sugar permeation than simply maltosaccharide transport, and hence the well-known maltoporin activity of LamB is but one facet of its role as the general glycoporin of E. coli. A corollary of these findings is that OmpF/OmpC porins, present at high levels in carbon-limited bacteria, do not provide sufficient permeability to sugars or even glycerol to support high growth rates at low concentrations. Hence, the sugar-binding site of LamB protein is an important contributor to the permeability of the outer membrane to carbohydrates in habitats with low extracellular nutrient concentrations.  相似文献   

17.
The outer membrane (OM) of Gram-negative bacteria is a complex bilayer composed of proteins, phospholipids, lipoproteins, and lipopolysaccharides. Despite recent advances revealing the molecular pathways underlying protein and lipopolysaccharide incorporation into the OM, the spatial distribution and dynamic regulation of these processes remain poorly understood. Here, we used sequence-specific fluorescent labeling to map the incorporation patterns of an OM-porin protein, LamB, by labeling proteins only after epitope exposure on the cell surface. Newly synthesized LamB appeared in discrete puncta, rather than evenly distributed over the cell surface. Further growth of bacteria after labeling resulted in divergence of labeled LamB puncta, consistent with a spatial pattern of OM growth in which new, unlabeled material was also inserted in patches. At the poles, puncta remained relatively stationary through several rounds of division, a salient characteristic of the OM protein population as a whole. We propose a biophysical model of growth in which patches of new OM material are added in discrete bursts that evolve in time according to Stokes flow and are randomly distributed over the cell surface. Simulations based on this model demonstrate that our experimental observations are consistent with a bursty insertion pattern without spatial bias across the cylindrical cell surface, with approximately one burst of ∼10−2 µm2 of OM material per two minutes per µm2. Growth by insertion of discrete patches suggests that stochasticity plays a major role in patterning and material organization in the OM.  相似文献   

18.
Summary Two S. typhimurium strains TA1534 (rfa +) and TA1538 (rfaE) were transformed with the lamB expression plasmid pAMH70. Transposition events with placMu55 hybrid phage were successful only with TA1534/pAMH70 strain. Using SDS-PAGE, the LamB protein was present in the total cell proteins but not in the outer membrane proteins of the TA1538/pAMH70 strain. The LamB protein must linked to the LPS of the outer membrane to allow adsorption of phage in S. typhimurium.  相似文献   

19.
We are developing a genetic approach to study with a single antibody the folding and topology of LamB, an integral outer membrane protein from Escherichia coli K-12. This approach consists of inserting the same reporter foreign antigenic determinant (the C3 epitope from poliovirus) at different sites of LamB so that the resulting hybrid proteins have essentially kept the in vivo biological properties of LamB and therefore its cellular location and structure; the corresponding sites are called permissive sites. A specific monoclonal antibody can then be used to examine the position of the reporter epitope with respect to the protein and the membrane. We present an improved and efficient procedure that led us to identify eight new permissive sites in LamB. These sites appear to be distributed on both sides of the membrane. At one of them (after residue 253), the C3 epitope was detected on intact bacteria, providing the first direct argument for exposure of the corresponding LamB region at the cell surface. At this site as well as at four others (after residues 183, 219, 236, and 352), the C3 epitope could be detected with the C3 monoclonal antibody at the surface of the extracted trimeric LamB-C3 hybrid proteins. We provide a number of convergent arguments showing that the hybrid proteins are not strongly distorted with respect to the wild-type protein so that the conclusions drawn are also valid for this protein. These conclusions are essentially in agreement with the proposed folding model for the LamB protein. They agree, in particular, with the idea that regions 183 and 352 are exposed to the periplasm. In addition, they suggest that region 236 is buried at the external face of the outer membrane and that region 219 is exposed to the periplasm. Including the 3 sites previously determined, 11 permissive sites are now available in LamB, including 3 at the cell surface and most probably at least 3 in the periplasm. We discuss the nature of such sites, the generalization of this approach to other proteins, and possible applications.  相似文献   

20.
LamB is one of the major cellular proteins when E. coli is grown in the presence of maltose and is localized in the outer membrane. Previous immunolabellings obtained with monoclonal antibodies showed that this protein is a transmembrane protein and led to the detection of 4 epitopes exposed on the cell surface and 2 located on the inner surface of the outer membrane (Scheckman et al., 1983). In the present study, we have used this biological model in order to see whether these two classes of epitopes could be distinguished by immunocytochemical labelling performed on thin sections of E. coli embedded in Lowicryl K4M (Carleman et al., 1982). The optimal conditions of fixation and embedding were first established for labelling with poly- or monoclonal antibodies detected by Protein A-gold complexes. The analysis of gold particle distribution on each side of the outer membrane after labelling with a polyclonal serum or after its adsorption on intact bacteria allowed us to conclude that the resolution of immunolabelling on thin sections was about 20 nm. The use monoclonal antibodies met with difficulties due mostly to the nonspecific labelling of the cytoplasm. Although this nonospecific labelling was decreased by fixing bacteria with paraformaldehyde alone, only one antibody gave a correct specific labelling after high dilution (1/3000). The gold particle distribution obtained with this antibody confirmed the location on the cell surface of this epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号