首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of novel sequence variants, which may be either disease-causing mutations or silent polymorphisms, in large numbers of samples is becoming the rate-limiting step in associating diseases with specific genes. This is particularly true in light of the imminent arrival of the complete reference sequence of the human genome. A number of techniques have been developed to analyze DNA samples for sequence variants rapidly. We describe a new technique, capillary-based conformation-sensitive gel electrophoresis (capillary CSGE) that transfers mutation detection from acrylamide gel to capillary electrophoresis. Capillary CSGE was able to detect 7/7 short insertion/deletions and 16/22 base substitutions in a series of random single-nucleotide polymorphisms and known variants in the lipoprotein lipase and BRCA2 genes. This technique has the potential to screen many megabases of DNA in a single day.  相似文献   

2.
Automation is essential for rapid genetic-based mutation analysis in clinical laboratory to screen a large number of DNA samples. We propose in this report an automatic process using Beckman Coulter P/ACE™ capillary electrophoresis (CE) with laser-induced fluorescence (LIF) system to detect a single-point mutation in the codon 12 of human K-ras gene. Polymerase chain reaction (PCR) using a fluorescently labeled reverse primer and a plain forward primer to specifically amplify a selected 50 bp DNA fragment in human K-ras gene. The amplified DNA is placed on the sample tray of the CE system with a pre-programmed step for single-strand conformation polymorphism (SSCP) analysis. Sample injection and denaturation processes are performed online along with separation and real-time data analysis. The concept of automation for rapid DNA mutation analysis using CE-LIF system for SSCP is presented.  相似文献   

3.
High speed DNA sequencing by capillary electrophoresis.   总被引:3,自引:4,他引:3       下载免费PDF全文
A major challenge of the Human Genome Initiative is the development of a rapid, accurate, and efficient DNA sequencing technology. A major limitation of current technology is the relatively long time required to perform the gel electrophoretic separations of DNA fragments produced in the sequencing reactions. We demonstrate here that it is possible to increase the speed of sequence analysis by over an order of magnitude by performing the electrophoresis and detection in ultra thin capillary gels. An instrument which utilizes these high speed separations to simultaneously analyze many samples will constitute a second generation automated DNA sequencer suitable for large-scale sequence analysis.  相似文献   

4.
The undertaking of large-scale DNA sequencing screens for somatic variants in human cancers requires accurate and rapid processing of traces for variants. Due to their often aneuploid nature and admixed normal tissue, heterozygous variants found in primary cancers are often subtle and difficult to detect. To address these issues, we have developed a mutation detection algorithm, AutoCSA, specifically optimized for the high throughput screening of cancer samples. Availability: http://www.sanger.ac.uk/genetics/CGP/Software/AutoCSA.  相似文献   

5.
We have analyzed previously three representative p53 single-point mutations by capillary-electrophoresis single-strand conformation polymorphism (CE-SSCP). In the current study, we compared our CE-SSCP results with the potential secondary structures predicted by an RNA/DNA-folding algorithm with DNA energy rules, used in conjunction with a computer analysis workbench called STRUCTURELAB. Each of these mutations produces measurable shifts in CE migration times relative to wild type. Using computerized folding analysis, each of the mutations was found to have a conformational difference relative to wild type, which accounts for the observed differences in CE migration. Additional properties exhibited in the CE electropherograms were also explained using the computerized analysis. These include the appearance of secondary peaks and the temperature dependence of the electrophoretic patterns. The results yield insight into the mechanism of SSCP and how the conditions of this measurement, especially temperature, may be optimized to improve the sensitivity of the SSCP method. The results may also impact other diagnostic methods, which would benefit by a better understanding of DNA single-strand conformation polymorphisms to optimize conditions for enzymatic cleavage and DNA hybridization reactions.  相似文献   

6.
Capillary electrophoresis was used in this study to separate urinary myoglobin from hemoglobin based on its electrophoretic mobility. Urine was applied directly without any treatment. The separation was accomplished in less than 7 min. Myoglobin extracted from human muscle tissues was separated, in a borate buffer 150 mM, pH 8.7 containing 0.5% polyethyleneglycol at 6 kV, into two peaks (MI and MII) which were also resolved far from hemoglobin. Upon standing at room temperature, MII converted into MI. Horse myoglobin eluted close to MI.The addition of polyethyleneglycol to the buffer enhanced the separation and increased the peak height of myoglobin. Optimum conditions for the separation are discussed. The method is suitable for routine clinical analysis because of its simplicity and speed.  相似文献   

7.
Mutation detection plays a great role in genetic and medical research and clinical diagnosis of inherited diseases and particular cancers. Single-strand conformation polymorphism (SSCP) analysis is one of the most popular methods for detection of mutations. Recently, automated capillary electrophoresis (CE) systems have been used in SSCP analysis instead of conventional slab gel electrophoresis. SSCP analysis in combination with CE is a rapid, simple, sensitive and high-throughput mutation screening tool, and has been successfully applied for mutation detection involving human tumor suppressor genes, oncogenes and disease-causing genes. The new technique has a great potential for mutation screening of large numbers of samples in clinical diagnosis. This review discusses basic issues about the methodology of SSCP analysis based on CE and summarizes several key applications.  相似文献   

8.
Pyrosequencing is a DNA sequencing method based on the principle of sequencing-by-synthesis and pyrophosphate detection through a series of enzymatic reactions. This bioluminometric, real-time DNA sequencing technique offers unique applications that are cost-effective and user-friendly. In this study, we have combined a number of methods to develop an accurate, robust and cost efficient method to determine allele frequencies in large populations for association studies. The assay offers the advantage of minimal systemic sampling errors, uses a general biotin amplification approach, and replaces dTTP for dATP-apha-thio to avoid non-uniform higher peaks in order to increase accuracy. We demonstrate that this newly developed assay is a robust, cost-effective, accurate and reproducible approach for large-scale genotyping of DNA pools. We also discuss potential improvements of the software for more accurate allele frequency analysis.  相似文献   

9.
This protocol describes capillary array electrophoresis single-strand conformation polymorphism (CAE-SSCP), a screening method for detection of unknown and previously identified mutations. The method detects 98% of mutations in a sample material and can be applied to any organism where the goal is to determine genetic variation. This protocol describes how to screen for mutations in 192 singleplex or up to 768 multiplex samples over 3 days. The protocol is based on the principle of sequence-specific mobility of single-stranded DNA in a native polymer, and covers all stages in the procedure, from initial DNA purification to final CAE-SSCP data analysis, as follows: DNA is purified, followed by PCR amplification using fluorescent primers. After PCR amplification, double-stranded DNA is heat-denatured to separate the strands and subsequently cooled on ice to avoid reannealing. Finally, samples are analyzed by capillary electrophoresis and appropriate analysis software.  相似文献   

10.
Constant denaturant capillary electrophoresis (CDCE) has been shown to be a sensitive method to detect point mutations in DNA sequences of 100-bp lengths. Here, we report a significant modifications for the instrumental setup that allows a highly accurate prediction of the elution time of DNA fragments from the capillary and an efficient collection of separated fractions. Fluorescently labeled DNA fragments of TP53 exon 8 wild-type and two mutants (base pair number 14480 and 14525) are detected at two separate points of the same capillary. This permits the precise calculation of the fragment velocity after separation in the heated zone because, at room temperature, all DNA fragments of the same length have the same velocity. Such precision permits the selective collection of separated fragments using an automated fraction collector for additional CDCE analysis or sequencing. Also, the two-point detection allows one to rapidly distinguish between double-stranded and single-stranded DNA fragments of the same length, a process that cannot be achieved with a one-point detection system alone. Both modifications greatly improve the procedure to detect novel mutations by means of CDCE.  相似文献   

11.
Asparagine-type oligosaccharides are released from core proteins as N-glycosylamines in the initial step of the action of the peptide N(4)-(N-acetyl-β-D-glucosaminyl)asparagine amidase F (PNGase F). The released N-glycosylamine-type oligosaccharides (which are exclusively present at least during the course of the enzyme reaction) could therefore be derivatized with amine-labeling reagents. Here we report a method using 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a labeling reagent for glycosylamine-type oligosaccharides. We applied the method for the sensitive analysis of some oligosaccharide mixtures derived from well-characterized glycoproteins including human transferrin, α(1)-acid glycoprotein, bovine fetuin, and ribonuclease B. NBD-labeled oligosaccharides were successfully separated on an amide-bonded column or a diol-silica column. This labeling method included the release of oligosaccharides from glycoproteins and derivatization of oligosaccharides in a one-pot reaction and was completed within 3h. The method showed approximately fivefold higher sensitivity than that involving labeling with ethyl p-aminobenzoate (ABEE) in HPLC using fluorometric detection and a one order of magnitude higher response in ESI-LC/MS. We also applied this method for the sensitive analysis of glycoprotein-derived oligosaccharides by capillary electrophoresis with laser-induced fluorometric detection (LIF-CE). The limit of detection in HPLC and LIF-CE were 100fmol and 4fmol, respectively.  相似文献   

12.
This work deals with annealing of single-stranded DNA and the binding of a serum respond factor to a DNA probe containing specific binding site. Capillary electrophoresis (CE) method is explored and compared with the mobility-shift gel electrophoresis (GE) procedure. The results indicate the CE method offers direct and rapid annealing of the DNA strands. It requires no prior incubation with additives (polynucleotides, proteins) to reduce nonspecific DNA-protein interactions. Unwanted nonspecific interactions are not observed in the CE method. The presence of a fluorescein tag to the DNA probe yields identical results to those with the radioactive label. A fluorescein tag in the CE work can be used without any adverse effects. The dissociation constant (Kd) of this protein-DNA complex by the CE method was similar to those determined by the GE method (approximately 10(-6) M). The proposed method is extremely powerful, highly sensitive, quantitative, and fast. It can determine even very small conformational differences of the DNA probe.  相似文献   

13.
The progress of antisense DNA therapy demands development of reliable and convenient methods for sequencing short single-stranded oligonucleotides. A method of phosphorothioate antisense DNA sequencing analysis using UV detection coupled to capillary electrophoresis (CE) has been developed based on a modified chain termination sequencing method. The proposed method reduces the sequencing cost since it uses affordable CE-UV instrumentation and requires no labeling with minimal sample processing before analysis. Cycle sequencing with ThermoSequenase generates quantities of sequencing products that are readily detectable by UV. Discrimination of undesired components from sequencing products in the reaction mixture, previously accomplished by fluorescent or radioactive labeling, is now achieved by bringing concentrations of undesired components below the UV detection range which yields a 'clean', well defined sequence. UV detection coupled with CE offers additional conveniences for sequencing since it can be accomplished with commercially available CE-UV equipment and is readily amenable to automation.  相似文献   

14.
DNA amplification technology has been applied to clinical diagnosis of infectious disease, genetic disorder, and cancer. After in vitro amplification of a particular DNA region, the methods of analysis for these amplified samples play a pivotal role in clinical diagnosis. Conventional gel electrophoresis has been routinely used in the lab for checking DNA. The whole procedure is time consuming and requires more than 1 ng of DNA for detection. To achieve greater performance in DNA diagnosis, we demonstrated capillary electrophoresis with laser induced fluorescence detection for analysis of amplified DNA. The analysis of DNA could be completed within 3 min and the data is directly entered into the computer. Considering the automatic and rapid process, we believe that this method could be routinely utilized for the clinical diagnosis of amplified DNA products.  相似文献   

15.
Damage to cellular DNA is implicated in the early stages of carcinogenesis and in the cytotoxicity of many anticancer agents, including ionizing radiation. Sensitive techniques are required for measuring cellular levels of DNA damage. We describe in detail a novel immunoassay that makes use of the resolving power of capillary electrophoresis and the sensitivity of laser-induced fluorescence detection. An example is given of the detection of thymine glycol in DNA produced by irradiation of human cells with a clinical dose of 2 Gy. A detection limit of approximately 10(-21) mol allowed us to monitor the repair of the lesion and to suggest that the cellular repair response may be inducible.  相似文献   

16.
Multiwavelength detection of laser induced fluorescence for dideoxynucleotide DNA sequencing with four different fluorophores and separation by capillary gel electrophoresis is described. A cryogenically cooled, low readout noise, 2-dimensional charge-coupled device is used as a detector for the on-line, on-column recording of emission spectra. The detection system has no moving parts and provides wavelength selectivity on a single detector device. The detection limit of fluorescently labeled oligonucleotides meets the high sensitivity requirements for capillary DNA sequencing largely due to the efficient operation of the CCD detector with a 94% duty cycle. Using the condition number as a selectivity criterion, multiwavelength detection provides better analytical selectivity than detection with four bandpass filters. Monte Carlo studies and analytical estimates show that base assignment errors are reduced with peak identification based on entire emission spectra. High-speed separation of sequencing samples and the treatment of the 2-dimensional electropherogram data is presented. Comparing the DNA sequence of a sample separated by slab gel electrophoresis with sequence from capillary gel electrophoresis and multiwavelength detection we find no significant difference in the amount of error attributable to the instrumentation.  相似文献   

17.
Cryptosporidium species generally lack distinguishing morphological traits, and consequently, molecular methods are commonly used for parasite identification. Various methods for Cryptosporidium identification have been proposed, each with their advantages and disadvantages. In this study, we show that capillary electrophoresis coupled with single-strand conformation polymorphism (CE-SSCP) is a rapid, simple and cost-effective method for the identification of Cryptosporidium species and genotypes. Species could be readily differentiated based on the SSCP mobility of amplified 18S rRNA gene molecules. Clones that differed by single-nucleotide polymorphisms could be distinguished on CE-SSCP mobility. Profiles of species known to have heterogenic copies of 18S rRNA gene contained multiple peaks. Cloning and sequencing of Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium fayeri and Cryptosporidium possum genotype 18S rRNA gene amplicons confirmed that these multiple peaks represented type A and type B 18S rRNA gene copies. CE-SSCP provides a reliable and sensitive analysis for epidemiological studies, environmental detection and diversity screening.  相似文献   

18.
19.
20.
The LIGA (Lithographie Galvanoformung Abformung) process using synchrotron radiation lithography is applied to the microfabrication of capillary array electrophoresis (CAE) device. Laser-induced fluorescence detection system for the CAE device has been constructed by the modification of laser confocal fluorescence microscopy. DNA molecules were detected during migrating in the microchannels filled with polymer separation matrices under electric field to optimize the separation conditions for DNA analysis. Based on this observation, we demonstrated that microfabricated CAE device is realized the fast separation of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号