首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We show that MDCK I cells express, besides the classical (Na(+)+K(+))ATPase, a Na(+)-stimulated ATPase activity with the following characteristics: (1) K(0.5) for Na(+) 7.5+/-1.5 mM and V(max) 23.12+/-1.1 nmol Pi/mg per min; (2) insensitive to 1 mM ouabain and 30 mM KCl; and (3) inhibited by furosemide and vanadate (IC(50) 42.1+/-8.0 and 4.3+/-0.3 microM, respectively). This enzyme forms a Na(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate phosphorylated intermediate with molecular weight of 100 kDa. Immunoprecipitation of the (Na(+)+K(+))ATPase with monoclonal anti-alpha(1) antibody reduced its activity in the supernatant by 90%; the Na(+)-ATPase activity was completely maintained. In addition, the formation of the Na(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate intermediate occurred at the same magnitude as that observed before immunoprecipitation. These data suggest that Na(+)-ATPase and (Na(+)+K(+))ATPase activities are independent, with Na(+)-ATPase belonging to a different enzyme entity.  相似文献   

2.
Kinetics of phosphorylation of Na+/K(+)-ATPase by protein kinase C   总被引:5,自引:0,他引:5  
The kinetics of phosphorylation of an integral membrane enzyme, Na+/K(+)-ATPase, by calcium- and phospholipid-dependent protein kinase C (PKC) were characterized in vitro. The phosphorylation by PKC occurred on the catalytic alpha-subunit of Na+/K(+)-ATPase in preparations of purified enzyme from dog kidney and duck salt-gland and in preparations of duck salt-gland microsomes. The phosphorylation required calcium (Ka approximately 1.0 microM) and was stimulated by tumor-promoting phorbol ester (12-O-tetradecanoylphorbol 13-acetate) in the presence of a low concentration of calcium (0.1 microM). PKC phosphorylation of Na+/K(+)-ATPase was rapid and plateaued within 30 min. The apparent Km of PKC for Na+/K(+)-ATPase as a substrate was 0.5 microM for dog kidney enzyme and 0.3 microM for duck salt-gland enzyme. Apparent substrate inhibition of PKC activity was observed at concentrations of purified salt-gland Na+/K(+)-ATPase greater than 1.0 microM. Phosphorylation of purified kidney and salt-gland Na+/K+ ATPases occurred at both serine and threonine residues. The 32P-phosphopeptide pattern on 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis after hydroxylamine cleavage of pure 32P-phosphorylated alpha subunit was the same for the two sources of enzyme, which suggests that the phosphorylation sites are similar. The results indicate that Na+/K(+)-ATPase may serve as a substrate for PKC phosphorylation in intact cells and that the Na+/K(+)-ATPase could be a useful in vitro model substrate for PKC interaction with integral membrane proteins.  相似文献   

3.
The ATPase activities were studied in rat erythrocytes permeabilized with saponin. The concentrations of calcium and magnesium ions were varied within the range of 0.1-60 microM and 50-370 microM, respectively, by using EGTA-citrate buffer. The maximal activity of Ca2(+)-ATPase of permeabilized erythrocytes was by one order of magnitude higher, whereas the Ca2(+)-binding affinity was 1.5-2 times higher than that in erythrocyte ghosts washed an isotonic solution containing EGTA. Addition of the hemolysate restored the kinetic parameters of ghost Ca2(+)-ATPase practically completely, whereas in the presence of exogenous calmodulin only part of Ca2(+)-ATPase activity was recovered. Neither calmodulin nor R24571, a highly potent specific inhibitor of calmodulin-dependent reactions, influenced the Ca2(+)-ATPase activity of permeabilized erythrocytes. At Ca2+ concentrations below 0.7 microM, ouabain (0.5-1 mM) activated whereas at higher Ca2+ concentrations it inhibited the Ca2(+)-ATPase activity. Taking this observation into account the Na+/K(+)-ATPase was determined as the difference of between the ATPase activities in the presence of Na+ and K+ and in the presence of K+ alone. At physiological concentration of Mg2+ (370 microM), the addition of 0.3-1 microM Ca2+ increased Na+/K(+)-ATPase activity by 1.5-3-fold. Higher concentrations of this cation inhibited the enzyme. At low Mg2+ concentration (e.g., 50 microM) only Na+/K(+)-ATPase inhibition by Ca2+ was seen. It was found that at [NaCl] less than 20 mM furosemide was increased ouabain-inhibited component of ATPase in Ca2(+)-free media. This activating effect of furosemide was enhanced with a diminution of [Na+] upto 2 mM and did not reach the saturation level unless the 2 mM of drug was used. The activating effect of furosemide on Na+/K(+)-ATPase activity confirmed by experiments in which the ouabain-inhibited component was measured by the 86Rb+ influx into intact erythrocytes.  相似文献   

4.
Influence of aliphatic polyamines of spermine and spermidine on the enzymatic activity of the ouabain-sensitive Na+,K(+)-ATPase and the ouabain-resistant basal Mg(2+)-ATPase (specific activity--10.6 +/- 0.9 and 18.1 +/- 1.2 microM P(i)/hour on 1 mg of protein accordingly, n = 7) has been studied in the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution. It was found, that the polyamine spermine in concentration of 1 and 10 mM activated the Na+,K(+)-ATPase by 54 and 64% on the average relative to control value. Spermidine also stimulated the Na+,K(+)-ATPase activity, however it did it less efficiently than spermine: by 8 and 20% on the average at concentration of 1 and 10 mM, accordingly. Similarly, polyamines had affect on the basal Mg(2+)-ATPase: spermine in concentration of 1 and 10 mM activated it by 26 and 39% relative to control value; spermidine in concentration of 1 and 10 mM activated it by 10 and 32% relative to control. The magnitudes of the apparent activation constant K(a) of spermine were 0.35 +/- 0.07 and 0.10 +/- 0.02 mM for Na+,K(+)-ATPase and basal Mg(2+)-ATPase, accordingly (M +/- m, n = 5). It is supposed, that the obtained experimental data can be useful in the further research of the membrane mechanisms underlying of the cationic exchange in the smooth muscles, in particular, when investigating the role of the plasmatic membrane in providing electromechanical coupling in them, and also in regulation of ionic homeostasis in the smooth muscle cells.  相似文献   

5.
We tested whether activation of inwardly rectifying K(+) (Kir) channels, Na(+)-K(+)-ATPase, or nitric oxide synthase (NOS) play a role in K(+)-induced dilatation of the rat basilar artery in vivo. When cerebrospinal fluid [K(+)] was elevated from 3 to 5, 10, 15, 20, and 30 mM, a reproducible concentration-dependent vasodilator response was elicited (change in diameter = 9 +/- 1, 27 +/- 4, 35 +/- 4, 43 +/- 12, and 47 +/- 16%, respectively). Responses to K(+) were inhibited by approximately 50% by the Kir channel inhibitor BaCl(2) (30 and 100 microM). In contrast, neither ouabain (1-100 microM, a Na(+)-K(+)-ATPase inhibitor) nor N(G)-nitro-L-arginine (30 microM, a NOS inhibitor) had any effect on K(+)-induced vasodilatation. These concentrations of K(+) also hyperpolarized smooth muscle in isolated segments of basilar artery, and these hyperpolarizations were virtually abolished by 30 microM BaCl(2). RT-PCR experiments confirmed the presence of mRNA for Kir2.1 in the basilar artery. Thus K(+)-induced dilatation of the basilar artery in vivo appears to partly involve hyperpolarization mediated by Kir channel activity and possibly another mechanism that does not involve hyperpolarization, activation of Na(+)-K(+)-ATPase, or NOS.  相似文献   

6.
Many protists use a H(+) gradient across the plasma membrane, the proton motive force, to drive nutrient uptake. This force is generated in part by the plasma membrane potential (DeltaPsi). We investigated the regulation of the DeltaPsi in Pneumocystis carinii using the potentiometric fluorescent dye bisoxonol. The steady state DeltaPsi in a buffer containing Na(+) and K(+) (standard buffer) was found to be -78+/-8 mV. In the absence of Na(+) and K(+) (NMG buffer) or Cl(-) (gluconate buffer), DeltaPsi was not significantly changed suggesting that cation and anion conductances do not play a significant role in the regulation of DeltaPsi in P. carinii. The DeltaPsi was also not affected by inhibitors of the Na(+)/K(+)-ATPase, ouabain (1 mM), and the K(+)/H(+)-ATPase, omeprazole (1 mM). In contrast, inhibitors of the plasma membrane H(+)-ATPase, dicyclohexylcarbodiimide (100 microM), N-ethylmaleimide (100 microM) and diethylstilbestrol (25 microM), significantly depolarized the DeltaPsi to -43+/-7, -56+/-5 and -40+/-12 mV, respectively. The data support that the plasma membrane H(+)-ATPase plays a significant role in the regulation of DeltaPsi in P. carinii.  相似文献   

7.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons.  相似文献   

8.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

9.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

10.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

11.
We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K(+)-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0+/-0.1 microM) than the activity of innervated membranes (I50=2.6+/-0.2 microM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K(+)-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of alpha1 and alpha2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K(+)-ATPase alpha-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

12.
The data on hormonal regulation of ATP-driving ion pumps are contradictory depending on the object used: whether native cells or isolated membranes. To eliminate this contrariety, we studied the ion transporting ATPases in saponin-permeabilized cells in the presence of all endogenous regulators. In permeabilized erythrocytes we obtained the presence of Ca(2+)-dependent activation of Ca(2+)-ATPase by factor(s) not affected by calmodulin antagonist R24571. We obtained also Ca(2+)-dependent activation and inhibition of Na+,K(+)-ATPase. At a concentration of Mg(2+)-ions corresponding to the intracellular level (370 microM), the 0.5-0.7 microM Ca(2+)-activated Na+,K(+)-ATPase (up to 3-fold), whereas the 1-5 microM Ca2+ inhibited it. The cyclic AMP (10(-5) M) inhibited or eliminated Ca(2+)-dependent activation. The decrease in Mg(2+)-ion concentration to 50 microM eliminated the activation and strengthened the inhibition, which reached 100% at the 1-2 microM Ca2+ concentration. The washing of membranes with EGTA eliminated Ca2+ effects on Na+,K(+)-ATPase. These data suggest that the ion-transporting ATPases are activated or inhibited by Ca(2+)-dependent regulators whose activities may be changed by protein kinase catalysed phosphorylation.  相似文献   

13.
In the present work we show the existence of two Na+/K(+)-ATPase isozymes in rat myometrial microsomes and suggest that they have different Ca2+ sensitivities. The catalytic subunits (alpha 1, alpha 2) of Na+/K(+)-ATPase were labelled by fluorescein-isothiocyanate and separated by SDS gel electrophoresis. The two isozyme Ca2(+)-sensitivities were studied by comparing the kinetics of Ca2+, strophantidin, ouabain and N-ethylmaleimide inhibitions. Our results indicate that the activity of the high ouabain-sensitive part (alpha 2 type) of Na+/K(+)-ATPase enzyme could only be inhibited by micromolar Ca2+. Furthermore, treatment of the microsomal preparation with 1mM N-ethylmaleimide selectively inactivated the high Ca2+ sensitive isoform of myometrial Na+/K(+)-ATPase.  相似文献   

14.
Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase   总被引:12,自引:0,他引:12  
The K0.5 for intracellular sodium of the two forms of (Na+,K+)-ATPase which exist in rat adipocytes (Lytton, J., Lin, J. C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184) has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na+ pump and allow sodium to equilibrate into the cell. The activity of Na+,K+)-ATPase was then monitored with 86Rb+/K+ pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and 22Na+ tracer equilibration were used to determine the actual intracellular [Na+] under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular [Na+] nor on the Vmax of 86Rb+/K+ pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha (p less than 0.025 versus control) and 33 mM for alpha(+) (p less than 0.005 versus control). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions. Measurement of the K0.5 for sodium ion of (Na+,K+)-ATPase in membranes isolated from adipocytes revealed only a single component of activation with a low K0.5 of 3.5 or 12 mM in the presence of 10 or 100 mM KCl, respectively. Insulin treatment of the isolated membranes or of the cells prior to membrane separation had no effect on these values.  相似文献   

15.
The degree of heterogeneity of active Na+/K(+)-ATPases has been investigated in terms of ouabain sensitivity. A mathematical analysis of the dose-response curves (inhibition of Na+/K(+)-ATPase) at equilibrium is consistent with the putative existence of three inhibitory states for ouabain two of high (very high plus high) and one of low affinity. The computed IC50 values are: 23.0 +/- 0.15 nM, 460 +/- 4.0 nM and 320 +/- 4.6 microM, respectively. The relative abundance of the three inhibitory states was estimated as: 39%, 36% and 20%, respectively. Direct measurements of [3H]ouabain-binding at equilibrium carried out on membrane preparations with ATP, Mg2+ and Na+ also revealed two distinct high affinity-binding sites, the apparent Kd values of which were 17.0 +/- 0.2 nM (very high) and 80 +/- 1 nM (high), respectively. Dissociation processes were studied at different ouabain concentrations according to both reversal of enzyme inhibition and [3H]ouabain release. The reversal of enzyme inhibition occurred at three different rates, depending upon the ouabain doses used (10 nM, 2 and 100 microM). When the high-affinity sites were involved (ouabain doses lower than 2 microM) the dissociation process was biphasic. A similar biphasic pattern was also detected by [3H]ouabain-release. The time-course of [3H]ouabain dissociation (0.1 microM) was also biphasic. These data indicate that the three catalytic subunits of rat brain Na+/K(+)-ATPase alpha 1, alpha 2 and alpha 3 (Hsu, Y.-M. and Guidotti, G. (1989) Biochemistry 28, 569-573) are able to hydrolyse ATP and exhibit different affinities for cardiac glycosides.  相似文献   

16.
In our quest to develop a tissue-engineered tear secretory system, we have tried to demonstrate active transepithelial ion fluxes across rabbit lacrimal acinar cell monolayers on polyester membrane scaffolds to evaluate the bioelectrical properties of the cultured cells. Purified lacrimal gland acinar cells were seeded onto polyester membrane inserts and cultured to confluency. Morphological properties of the cell monolayers were evaluated by transmission electron microscopy and immunofluorescence staining for Na(+),K(+)-ATPase and the tight junction-associated protein occludin. Sections revealed cell monolayers with well-maintained epithelial cell polarity, i.e., presence of apical (AP) secretory granules, microvilli, and junctional complexes. Na(+),K(+)-ATPase was localized on both the basal-lateral and apical plasma membranes. The presence of tight cell junctions was demonstrated by a positive circumferential stain for occludin. Bioelectrical properties of the cell monolayers were studied in Ussing chambers under short-circuit conditions. Active ion fluxes were evaluated by inhibiting the short-circuit current (I(sc)) with a Na(+),K(+)-ATPase inhibitor, ouabain (100 microM; basal-lateral, BL), and under Cl(-)-free buffer conditions after carbachol stimulation (CCh; 100 microM). The directional apical secretion of Cl(-) was demonstrated through pharmacological analysis, using amiloride (1 mM; BL) and bumetanide (0.1 mM; BL), respectively. Regulated protein secretion was evaluated by measuring the beta-hexosaminidase catalytic activity in the AP culture medium in response to 100 microM basal CCh. In summary, rabbit lacrimal acinar cell monolayers generate a Cl(-)-dependent, ouabain-sensitive AP --> BL I(sc) in response to CCh, consistent with current models for Na(+)-dependent Cl(-) secretion.  相似文献   

17.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

18.
Guinea pig left ventricular muscle contains two distinct molecular forms of the Na+/K(+)-ATPase catalytic alpha subunit. Sarcolemmal vesicles highly enriched in Na+/K(+)-ATPase were isolated by a new procedure that yielded specific activities of 60-100 mumol Pi.h-1.mg-1. SDS/PAGE of isolated sarcolemma after reduction and alkylation of the sulfhydryl groups and identification on immunoblots with specific anti-(alpha subunit) antibodies indicated the presence of two major polypeptides of 100 kDa and 103 kDa, respectively. The two alpha subunits were functional: the dose/response curves of Na+/K(+)-ATPase activity with ouabain, dihydroouabain and digitoxigenin were biphasic, revealing the presence of high-affinity [concentration of drug causing 50% inhibition (IC50) = 10 nM] and low-affinity (IC50 = 2 microM) forms with proportional contributions of 55% and 45%, respectively. The involvement of the high-affinity form in the positive inotropic effect of digitalis and of the low-affinity sites in both inotropy and toxicity are consistent with the literature data on rodents.  相似文献   

19.
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles.  相似文献   

20.
To better understand the adaptive strategies that led to freshwater invasion by hyper-regulating Crustacea, we prepared a microsomal (Na+, K+)-ATPase by differential centrifugation of a gill homogenate from the freshwater shrimp Macrobrachium olfersii. Sucrose gradient centrifugation revealed a light fraction containing most of the (Na+, K+)-ATPase activity, contaminated with other ATPases, and a heavy fraction containing negligible (Na+, K+)-ATPase activity. Western blotting showed that M. olfersii gill contains a single alpha-subunit isoform of about 110 kDa. The (Na+, K+)-ATPase hydrolyzed ATP with Michaelis Menten kinetics with K5, = 165+/-5 microM and Vmax = 686.1+/-24.7 U mg(-1). Stimulation by potassium (K0.5 = 2.4+/-0.1 mM) and magnesium ions (K0.5 = 0.76+/-0.03 mM) also obeyed Michaelis-Menten kinetics, while that by sodium ions (K0.5 = 6.0+/-0.2 mM) exhibited site site interactions (n = 1.6). Ouabain (K0.5 = 61.6+/-2.8 microM) and vanadate (K0.5 = 3.2+/-0.1 microM) inhibited up to 70% of the total ATPase activity, while thapsigargin and ethacrynic acid did not affect activity. The remaining 30% activity was inhibited by oligomycin, sodium azide and bafilomycin A. These data suggest that the (Na+, K+)-ATPase corresponds to about 70% of the total ATPase activity; the remaining 30%, i.e. the ouabain-insensitive ATPase activity, apparently correspond to F0F1- and V-ATPases, but not Ca-stimulated and Na- or K-stimulated ATPases. The data confirm the recent invasion of the freshwater biotope by M. olfersii and suggest that (Na+, K+)-ATPase activity may be regulated by the Na+ concentration of the external medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号