首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Davis-Smyth  H Chen  J Park  L G Presta    N Ferrara 《The EMBO journal》1996,15(18):4919-4927
Vascular endothelial growth factor (VEGF) is an angiogenic inducer that mediates its effects through two high affinity receptor tyrosine kinases, Flt-1 and KDR. Flt-1 is required for endothelial cell morphogenesis whereas KDR is involved primarily in mitogenesis. Flt-1 has an alternative ligand, placenta growth factor (PlGF). Both Flt-1 and KDR have seven immunoglobulin (Ig)-like domains in the extracellular domain. The significance and function of these domains for ligand binding and receptor activation are unknown. Here we show that deletion of the second domain of Flt-1 completely abolishes the binding of VEGF. Introduction of the second domain of KDR into an Flt-1 mutant lacking the homologous domain restored VEGF binding. However, the ligand specificity was characteristic of the KDR receptor. We then created chimeric receptors where the first three or just the second Ig-like domains of Flt-1 replaced the corresponding domains in Flt-4, a receptor that does not bind VEGF, and analyzed their ability to bind VEGF. Both swaps conferred upon Flt-4 the ability to bind VEGF with an affinity nearly identical to that of wild-type Flt-1. Furthermore, transfected cells expressing these chimeric Flt-4 receptors exhibited increased DNA synthesis in response to VEGF or PlGF. These results demonstrate that a single Ig-like domain is the major determinant for VEGF-PlGF interaction and that binding to this domain may initiate a signal transduction cascade.  相似文献   

2.
Tan DC  Kini RM  Jois SD  Lim DK  Xin L  Ge R 《FEBS letters》2001,494(3):150-156
Vascular endothelial growth factor (VEGF) is an angiogenic stimulator which functions through two endothelial specific tyrosine kinase receptors, Flt-1 and Flk-1. In this work, we show that an 11-amino acid peptide derived from the second immunoglobulin-like domain of Flt-1 functions as an angiogenic inhibitor in chick chorioallantoic membrane and inhibited VEGF-induced vascular permeability in Miles' assay without binding to VEGF directly. Circular dichroism and nuclear magnetic resonance analyses indicate that this peptide forms a stable extended structure in solution, presumably beta-sheet structure and is most likely existing as a dimer. Our results suggest that this small peptide functions as an angiogenic inhibitor by inhibiting VEGF function through a non-VEGF binding mechanism.  相似文献   

3.
Vascular endothelial growth factor (VEGF) is a pleiotropic factor that exerts a multitude of biological effects through its interaction with two receptor tyrosine kinases, fms-like tyrosine kinase (Flt-1) or VEGF receptor 1 and kinase insert domain-containing receptor (KDR) or VEGF receptor 2. Whereas it is commonly accepted that KDR is responsible for the proliferative activities of VEGF, considerable controversy and uncertainty exist about the role of the individual receptors in eliciting many of the other effects. Based on a comprehensive mutational analysis of the receptor-binding site of VEGF, an Flt-1-selective variant was created containing four substitutions from the wild-type protein. This variant bound with wild-type affinity to Flt-1, was at least 470-fold reduced in binding to KDR, and had no activity in cell-based assays measuring autophosphorylation of KDR or proliferation of primary human vascular endothelial cells. Using a competitive phage display strategy, two KDR-selective variants were discovered with three and four changes from wild-type, respectively. Both variants had approximately wild-type affinity for KDR, were about 2000-fold reduced in binding to Flt-1, and showed activity comparable with the wild-type protein in KDR autophosphorylation and endothelial cell proliferation assays. These variants will serve as useful reagents in elucidating the roles of Flt-1 and KDR.  相似文献   

4.
The angiogenic growth factor VEGF binds to the receptor tyrosine kinases Flt-1 and KDR/Flk-1. Immunoglobulin (Ig)-like loop-2 of Flt-1 is involved in binding VEGF, but the contribution of other Flt-1 Ig-loops to VEGF binding remains unclear. We tested the ability of membrane-bound chimeras between the extracellular domain of Flt-1 and the cell adhesion molecule embigin to bind VEGF. VEGF bound as well to receptors containing Flt-1 loops 1-2 or 2-3 as it did to the entire Flt-1 extracellular domain. Chimeras containing only loop-2 of Flt-1 bound VEGF with 22-fold lower affinity. We conclude that high-affinity VEGF binding requires Ig-like loop-2 plus either loop-1 or loop-3. In addition, Flt-1 amino acid residues Arg-224 and Asp-231 were not essential for high-affinity binding of VEGF to membrane-bound Flt-1.  相似文献   

5.
Vascular endothelial growth factor (VEGF165) exhibits multiple effects via the activation of two distinct endothelial receptor tyrosine kinases: Flt-1 (fms-like tyrosine kinase-1) and KDR (kinase insert domain-containing receptor). KDR shows strong ligand-dependent tyrosine phosphorylation in comparison with Flt-1 and mainly mediates the mitogenic, angiogenic, and permeability-enhancing effects of VEGF165. Here we show the isolation of two VEGFs from viper venoms and the characterization of their unique biological properties. Snake venom VEGFs strongly stimulated proliferation of vascular endothelial cells in vitro. Interestingly, the maximum activities were almost twice that of VEGF165. They also induced strong hypotension on rat arterial blood pressure compared with VEGF165 in vivo. A receptor binding assay revealed that snake venom VEGFs bound to KDR-IgG with high affinity (Kd = approximately 0.1 nm) as well as to VEGF165 but did not interact with Flt-1, Flt-4, or neuropilin-1 at all. Our data clearly indicate that snake venom VEGFs act through the specific activation of KDR and show potent effects. Snake venom VEGFs are a highly specific ligand to KDR and form a new group of the VEGF family.  相似文献   

6.
Vascular endothelial growth factor (VEGF) binding to the kinase domain receptor (KDR/FLK1 or VEGFR-2) mediates vascularization and tumor-induced angiogenesis. Since there is evidence that KDR plays an important role in tumor angiogenesis, we sought to identify peptides able to block the VEGF-KDR interaction. A phage epitope library was screened by affinity for membrane-expressed KDR or for an anti-VEGF neutralizing monoclonal antibody. Both strategies led to the isolation of peptides binding KDR specifically, but those isolated by KDR binding tended to display lower reactivities. Of the synthetic peptides corresponding to selected clones tested to determine their inhibitory activity, ATWLPPR completely abolished VEGF binding to cell-displayed KDR. In vitro, this effect led to the inhibition of the VEGF-mediated proliferation of human vascular endothelial cells, in a dose-dependent and endothelial cell type-specific manner. Moreover, in vivo, ATWLPPR totally abolished VEGF-induced angiogenesis in a rabbit corneal model. Taken together, these data demonstrate that ATWLPPR is an effective antagonist of VEGF binding, and suggest that this peptide may be a potent inhibitor of tumor angiogenesis and metastasis.  相似文献   

7.
Vascular endothelial growth factor (VEGF) has two highly homologous tyrosine kinase receptors: Flt-1 (VEGFR-1) and KDR (VEGFR-2). KDR is strongly phosphorylated on tyrosines and can transmit mitogenic and motogenic signals following VEGF binding, while Flt-1 is markedly less effective in mediating such functions. To dissect the regions that account for the differences between the two receptors, we generated a series of chimeric Flt-1-KDR molecules. We found that the juxtamembrane region of Flt-1 prevents key signaling functions. When the juxtamembrane region of Flt-1 is replaced by that of KDR, Flt-1 becomes competent to mediate endothelial cell migration and phosphatidylinositol 3'-kinase activation in response to VEGF. Further mutational analysis shows that a short divergent sequence is responsible for such repressor function. However, mutant Flt-1 receptors lacking this sequence do not transmit effective proliferative signals, suggesting that this receptor function is regulated separately. These results define a novel functional domain that serves to repress Flt-1 activity in endothelial cells.  相似文献   

8.
Vascular endothelial growth factor (VEGF) signaling plays an important role in angiogenesis. In the VEGF signaling pathway, the key components are VEGF and its receptors, Flt-1 and KDR. In this study, we show that transfection of synthetic miR-200b reduced protein levels of VEGF, Flt-1, and KDR. In A549 cells, miR-200b targeted the predicted binding sites in the 3′-untranslated region (3′-UTR) of VEGF, Flt-1, and KDR as revealed by a luciferase reporter assay. When transfected with miR-200b, the ability of HUVECs to form a capillary tube on Matrigel and VEGF-induced phosphorylation of ERK1/2 were significantly reduced. Taken together, these results suggest that miR-200b negatively regulates VEGF signaling by targeting VEGF and its receptors and that miR-200b may have therapeutic potential as an angiogenesis inhibitor.  相似文献   

9.
Vascular endothelial growth factor is an important physiological regulator of angiogenesis. The function of this endothelial cell selective growth factor is mediated by two homologous tyrosine kinase receptors, fms-like tyrosine kinase 1 (Flt-1) and kinase domain receptor (KDR). Although the functional consequence of vascular endothelial growth factor binding to the Flt-1 receptor is not fully understood, it is well established that mitogenic signaling is mediated by KDR. Upon sequencing several independent cDNA clones spanning the cytoplasmic region of human KDR, we identified and confirmed the identity of a functionally required valine at position 848 in the ATP binding site, rather than the previously reported glutamic acid residue, which corresponds to an inactive tyrosine kinase. The cytoplasmic domain of recombinant native KDR, expressed as a glutathione S-transferase fusion protein, can undergo autophosphorylation in the presence of ATP. In addition, the kinase activity can be substantially increased by autophosphorylation at physiologic ATP concentrations. Mutation analysis indicates that both tyrosine residues 1054 and 1059 are required for activation, which is a consequence of an increased affinity for both ATP and the peptide substrate and has no effect on kcat, the intrinsic catalytic activity of the enzyme. KDR kinase catalyzes phosphotransfer by formation of a ternary complex with ATP and the peptide substrate. We demonstrate that tyrosine kinase antagonists can preferentially inhibit either the unactivated or activated form of the enzyme.  相似文献   

10.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

11.
Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-A165 (VEGF-A165) in endothelial cells. To define the role of NP-1 in the biological functions of VEGF, we developed a specific peptide antagonist of VEGF binding to NP-1 based on the NP-1 binding site located in the exon 7- and 8-encoded VEGF-A165 domain. The bicyclic peptide, EG3287, potently (K(i) 1.2 microM) and effectively (>95% inhibition at 100 microM) inhibited VEGF-A165 binding to porcine aortic endothelial cells expressing NP-1 (PAE/NP-1) and breast carcinoma cells expressing only NP-1 receptors for VEGF-A, but had no effect on binding to PAE/KDR or PAE/Flt-1. Molecular dynamics calculations, a nuclear magnetic resonance structure of EG3287, and determination of stability in media, indicated that it constitutes a stable subdomain very similar to the corresponding region of native VEGF-A165. The C terminus encoded by exon 8 and the three-dimensional structure were both critical for EG3287 inhibition of NP-1 binding, whereas modifications at the N terminus had little effect. Although EG3287 had no direct effect on VEGF-A165 binding to KDR receptors, it inhibited cross-linking of VEGF-A165 to KDR in human umbilical vein endothelial cells co-expressing NP-1, and inhibited stimulation of KDR and PLC-gamma tyrosine phosphorylation, activation of ERKs1/2 and prostanoid production. These findings characterize the first specific antagonist of VEGF-A165 binding to NP-1 and demonstrate that NP-1 is essential for optimum KDR activation and intracellular signaling. The results also identify a key role for the C-terminal exon 8 domain in VEGF-A165 binding to NP-1.  相似文献   

12.
VEGF (vascular endothelial growth factor) regulates neovascularization through binding to its receptor KDR (kinase insert domain-containing receptor; VEGF receptor-2). We recently identified a catalytically inactive PLA(2) (phospholipase A(2)) homologue (KDR-bp) in the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus) as a third KDR-binding protein, in addition to VEGF(165) and tissue inhibitor of metalloproteinase-3. KDR-bp binds to the extracellular domain of KDR with a K(d) of 10(-8) M, resulting in specific blockade of endothelial cell growth induced by VEGF(165). Inactive PLA(2) homologues are widely distributed in the venoms of Viperidae snakes and are known to act as myotoxins. In the present study, we demonstrated that KDR-binding ability is a common characteristic for inactive PLA(2) homologues in snake venom, but not for active PLA(2)s such as neurotoxic and platelet aggregation-modulating PLA(2)s. To understand better the KDR and KDR-bp interaction, we resolved the binding region of KDR-bp using eight synthetic peptides designed based on the structure of KDR-bp. A synthetic peptide based on the structure of the C-terminal loop region of KDR-bp showed high affinity for KDR, but other peptides did not, suggesting that the C-terminal loop region of KDR-bp is involved in the interaction with KDR. The results of the present study provide insight into the binding of inactive PLA(2) homologues to KDR, and may also assist in the design of novel anti-KDR molecules for anti-angiogenic therapy.  相似文献   

13.
We investigated whether acute systemic exercise increases vascular endothelial growth factor (VEGF), VEGF receptor (KDR and Flt-1) mRNA, and VEGF protein in sedentary humans. Twelve sedentary subjects were recruited and performed 1 h of acute, cycle ergometer exercise at 50% of maximal oxygen consumption. Muscle biopsies were obtained from the vastus lateralis before exercise and at 0, 2, and 4 h postexercise. Acute exercise significantly increased VEGF mRNA at 2 and 4 h and increased KDR and Flt-1 mRNA at 4 h postexercise. The sustained increase in VEGF mRNA through 4 h and the increases in KDR and Flt-1 at 4 h are different from their respective time course responses in rats. In contrast to the increase in VEGF mRNA postexercise, VEGF protein levels were decreased at 0 h postexercise. These results provide evidence in humans that 1) VEGF, KDR, and Flt-1 mRNA are increased by acute systemic exercise; 2) the time course of the VEGF, KDR, and Flt-1 mRNA responses are different from those previously reported in rats (Gavin TP and Wagner PD. Acta Physiol Scand 175: 201-209, 2002); and 3) VEGF protein is decreased immediately after exercise.  相似文献   

14.
Stem cell factor (SCF) is an early-acting hematopoietic cytokine that elicits multiple biological effects. SCF is dimeric and occurs in soluble and membrane-bound forms. It transduces signals by ligand- mediated dimerization of its receptor, Kit, which is a receptor tyrosine kinase related to the receptors for platelet-derived growth factor (PDGF), macrophage colony-stimulating factor, Flt-3 ligand and vascular endothelial growth factor (VEGF). All of these have extracellular ligand-binding portions composed of immunoglobulin-like repeats. We have determined the crystal structure of selenomethionyl soluble human SCF at 2.2 A resolution by multiwavelength anomalous diffraction phasing. SCF has the characteristic helical cytokine topology, but the structure is unique apart from core portions. The SCF dimer has a symmetric 'head-to-head' association. Using various prior observations, we have located potential Kit-binding sites on the SCF dimer. A superimposition of this dimer onto VEGF in its complex with the receptor Flt-1 places the binding sites on SCF in positions of topographical and electrostatic complementarity with the Kit counterparts of Flt-1, and a similar model can be made for the complex of PDGF with its receptor.  相似文献   

15.
Vascular endothelial cell growth factor (VEGF) is a potent angiogenic factor expressed during embryonic development, during wound healing, and in pathologies dependent on neovascularization, including cancer. Regulation of the receptor tyrosine kinases, KDR and Flt-1, to which VEGF binds on endothelial cells is incompletely understood. Chronic incubation with tumor-conditioned medium or VEGF diminished (125)I-VEGF binding to human umbilical vein endothelial cells, incorporation of (125)I-VEGF into covalent complexes with KDR and Flt1, and immunoreactive KDR in cell lysates. Receptor down-regulation desensitized VEGF activation of mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2) and p38 mitogen-activated protein kinase. Preincubation with VEGF or tumor-conditioned medium down-regulated cell surface receptor expression but up-regulated KDR and Flt-1 mRNAs, an effect abrogated by a neutralizing VEGF antibody. Removal of VEGF from the medium led to recovery of (125)I-VEGF binding and resensitization of human umbilical vein endothelial cells. Recovery of receptor expression was inhibited by cycloheximide, indicating that augmented VEGF receptor mRNAs, and not receptor recycling from a cytoplasmic pool, restored responsiveness. As the VEGF receptors promote endothelial cell survival, proliferation, and other events necessary for angiogenesis, the noncoordinate regulation of VEGF receptor proteins and mRNAs suggests that human umbilical vein endothelial cells are protected against inappropriate or prolonged loss of VEGF receptors by a homeostatic mechanism important to endothelial cell function.  相似文献   

16.
Endothelial cells express two related vascular endothelial growth factor (VEGF) receptor tyrosine kinases, KDR (kinase-insert domain containing receptor, or VEGFR-2) and Flt-1 (fms-like tyrosine kinase, or VEGFR-1). Although considerable experimental evidence links KDR activation to endothelial cell mitogenesis, there is still significant uncertainty concerning the role of individual VEGF receptors for other biological effects such as vascular permeability. VEGF mutants that bind to either KDR or Flt-1 with high selectivity were used to determine which of the two receptors serves to mediate different VEGF functions. In addition to mediating mitogenic signaling, selective KDR activation was sufficient for the activation of intracellular signaling pathways implicated in cell migration. KDR stimulation caused tyrosine phosphorylation of both phosphatidylinositol 3-kinase and phospholipase Cgamma in primary endothelial cells and stimulated cell migration. KDR-selective VEGF was also able to induce angiogenesis in the rat cornea to an extent indistinguishable from wild type VEGF. We also demonstrate that KDR, but not Flt-1, stimulation is responsible for the induction of vascular permeability by VEGF.  相似文献   

17.
Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA.   总被引:13,自引:0,他引:13  
Vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR play important roles in physiological and pathological angiogenesis. Ribozymes that target the VEGF receptor mRNAs were developed and their biological activities in cell culture and an animal model were assessed. Ribozymes targeting Flt-1 or KDR mRNA sites reduced VEGF-induced proliferation of cultured human vascular endothelial cells and specifically lowered the level of Flt-1 or KDR mRNA present in the cells. Anti- Flt-1 and KDR ribozymes also exhibited anti-angiogenic activity in a rat corneal pocket assay of VEGF-induced angiogenesis. This report illustrates the anti-angiogenic potential of these ribozymes as well as their value in studying VEGF receptor function in normal and pathophysiologic states.  相似文献   

18.
The homodimeric form of a recombinant cytokine interleukin-6 (IL-6(D)) is known to antagonize IL-6 signaling. In this study, spatially proximal residues between IL-6 chains in IL-6(D) were identified using a method for specific recognition of intermolecular cross-linked peptides. Our strategy involved mixing 1:1 (15)N-labeled and unlabeled ((14)N) protein to form a mixture of isotopically labeled and unlabeled homodimers, which was chemically cross-linked. This cross-linked IL-6(D) was subjected to proteolysis by trypsin and the generated peptides were analyzed by electrospray ionization time-of-flight mass spectrometry (MS). Molecular ions from cross-linked peptides of intermolecular origin are labeled with [(15)N/(15)N] + [(15)N/(14)N] + [(14)N/(15)N] + [(14)N/(14)N] yielding readily identified triplet/quadruplet MS peaks. All other peptide species are labeled with [(15)N] + [(14)N] yielding doublet peaks. Intermolecular cross-linked peptides were identified by MS, and cross-linked residues were identified. This intermolecular cross-link detection method, which we have designated "mixed isotope cross-linking" MIX may have more general application to protein-protein interaction studies. The pattern of proximal residues found was consistent with IL-6(D) having a domain-swapped fold similar to IL-10 and interferon-gamma. This fold implies that IL-6(D)-mediated antagonism of IL-6 signaling is caused by obstruction of cooperative gp130 binding on IL-6(D), rather than direct blocking of gp-130-binding sites on IL-6(D).  相似文献   

19.
Shibuya M 《Biological chemistry》2002,383(10):1573-1579
The vascular endothelial growth factor (VEGF) receptor family in mammals contains three members, VEGFR1(Flt-1), VEGFR2(KDR/Flk-1) and VEGFR3 (Flt-4), which directly regulate the formation of blood vessels and lymphatic vessels. These two circular systems are essential for the supply of O2 and nutrients to all tissues of the body as well as the drainage of excess fluids with waste metabolites from peripheral tissues. VEGF receptors have a characteristic structure with 7 Ig-like domains in the extracellular domain and a cytoplasmic tyrosine kinase domain with a long kinase insert region. Recently, some novel findings on the phylogenetical conservation of VEGF receptor genes in animals were reported: the conservation of the VEGFR1/soluble-VEGFR1 gene in birds, and the conservation of the VEGFR-PDGFR-like receptor gene in nonvertebrates. Based on this new information as well as established observations, here the possibility is discussed that the three VEGFR genes phylogenetically segregated not at once when the vertebrates established, but in a step-wise manner: two genes first (the VEGFR1/R2 progenitor and the VEGFR3 gene), and subsequently the three genes VEGFR1, R2 and R3.  相似文献   

20.
Vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-alpha) have been shown to synergistically increase tissue factor (TF) expression in endothelial cells; however, the role of the VEGF receptors (KDR, Flt-1, and neuropilin) in this process is unclear. Here we report that VEGF binding to the KDR receptor is necessary and sufficient for the potentiation of TNF-induced TF expression in human umbilical vein endothelial cells. TF expression was evaluated by Western blot analysis and fluorescence-activated cell sorting. In the absence of TNF-alpha, wild-type VEGF- or KDR receptor-selective variants induced an approximate 7-fold increase in total TF expression. Treatment with TNF alone produced an approximate 110-fold increase in total TF expression, whereas coincubation of TNF-alpha with wild-type VEGF- or KDR-selective variants resulted in an approximate 250-fold increase in TF expression. VEGF lacking the heparin binding domain was also able to potentiate TF expression, indicating that heparin-sulfate proteoglycan or neuropilin binding is not required for TF up-regulation. Neither placental growth factor nor an Flt-1-selective variant was capable of inducing TF expression in the presence or absence of TNF. Inhibition of protein-tyrosine kinase or protein kinase C activity significantly blocked the TNF/VEGF potentiation of TF up-regulation, whereas phorbol 12-myristate 13-acetate, a protein kinase C activator, increased TF expression. These data demonstrate that KDR receptor signaling governs both VEGF-induced TF expression and the potentiation of TNF-induced up-regulation of TF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号