首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the toxicity and mutagenicity induced in human diploid lymphoblasts by various radiation doses of X-rays and two internal emitters. [125I]iododeoxyuridine ([125I]dUrd) and [3H]thymidine ([3H]TdR), incorporated into cellular DNA. [125I]dUrd was more effective than [3H]TdR at killing cells and producing mutations to 6-thioguanine resistance (6TGR). No ouabain-resistant mutants were induced by any of these agents. Expressing dose as total disintegrations per cell (dpc), the D0 for cell killing for [125I]dUrd was 28 dpc and for [3H]TdR was 385 dpc. The D0 for X-rays was 48 rad at 37°C. The slopes of the mutation curves were approximately 75 × 10−8 6TGR mutants per cell per disintegration for [125I]dUrd and 2 × 10−8 for [3H]TdR. X-Rays induced 8 × 10−8 6TGR mutants per cell per rad. Normalizing for survival, [125I]dUrd remained much more mutagenic at low doses (high survival levels) than the other two agents. Treatment of the cells at either 37°C or while frozen at −70°C yielded no difference in cytotoxicity or mutation for [125I]dUrd or [3H]TdR, whereas X-rays were 6 times less effective in killing cells at −70°C.

Assuming that incorporation was random throughout the genome, the mutagenic efficiencies of the radionuclides could be calculated by dividing the mutation rate by the level of incorporation. If the effective target size of the 6TGR locus is 1000–3000 base pairs, then the mutagenic efficiency of [125I]dUrd is 1.0–3.0 and of [3H]TdR is 0.02–0.06 total genomic mutations per cell per disintegration. 125I disintegrations are known to produce localized DNA double-strand breaks. If these breaks are potentially lethal lesions, they must be repaired, since the mean lethal dose (D0) was 28 dpc. The observations that a single dpc has a high probability of producing a mutation (mutagenic efficiency 1.0–3.0) would suggest, however, that this repair is extremely error-prone. If the breaks need not be repaired to permit survival, then lethal lesions are a subset of or are completely different from mutagenic lesions.  相似文献   


2.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10−8 M and was half-maximal at 7.9±3.4·10−7M. The increase at 1·10−5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10−9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10−5 M dopamine was 2.3±0.9·10−6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10−7M and 4.7±1.6·10−7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10−6Mcis-flupenthixol, 2.7±0.4·10−5Mtrans-flupenthixol, >1·10−5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

3.
This study reports on the specific binding of [3H]heparin to human adrenocortical carcinoma cell line SW-13. Heparin binding to SW-13 cells is specific, saturable, and time- and temperature-dependent with maximum binding occurring between 90 and 120 min at 22 °C. Scatchard analysis revealed two classes of binding sites. The apparent Kd for high-affinity receptors is 2.14 × 10−8 M with 1.48 × 106 sites per cells. Six other tested mammalian cell lines also have specific binding sites for heparin.  相似文献   

4.
Isolated, intact rat liver nuclei have high-affiity (Kd=10−9 M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4°C and rapidly lost at 37°C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25°C and 37°C than at 4°C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogenous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd=10−9 M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78±0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000×g, 30 min) contains high-capacity (955±405 (S.D.) fmol/mg protein), low-affinity (Kd=10.9±4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000×g, 60 min) contains low-capacity (46±15 (S.D.) fmol/mg protein), high-affinity (Kd=0.61± 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%–3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

5.
[3H] Leukotriene B4 (LTB4) binds concentration dependency to intact human polymorophonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4°C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of [3H] LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 × 10−9M and Bmax of 1.96 × 104 sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 × 10−9M and a Bmax of 45.6 × 104 sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25°C[3H] LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific [3H] LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.  相似文献   

6.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

7.
Metabolism of [3H] arachidonic acid ([3H] AA) and synthesis of prostaglandins were examined with ovine conceptuses and endometrial slices collected on various days after mating. Tissues were incubated for 24 hr with or without 5 μCi of [3H] AA and with 200 μg radioinert AA. In experiment 1, results of chromatography indicated that conceptuses collected on days 14 and 16 after mating metabolized [3H] AA to PGE2, PGF, PGFM, 6-keto-PGF, and to unidentified compounds in three chromatographic regions. One of these regions (region 1) contained triglycerides. Endometrial slices metabolized only small amounts of the [3H] AA to prostaglandins. In experiment 2, results of radioimmunoassays indicated that day 14 conceptuses released somewhat similar amounts (ng/mg tissue) of PGF (32.1 ± 17.9), PGFM (8.4 ± 6.2), PGE2 (12.3 ± 7.5) and 6-keto-PGF (41.4± 4.8), whereas day 16 conceptuses released more (P<.05) PGF2α (9.0 ± 4.1) and 6-keto-PGF (15.9 ± 2.7) than PGE2 (0.9 ± 0.2) or PGFM (0.5 ± 0.08). Day 14 and 16 endometrial slices released (ng/mg tissue) more (P<.05) PGFM (3.0 ± 0.2) and 6-keto-PGF (4.0 ± 0.4) than PGF (0.5 ± 0.08) or PGE2 (0.05 ± 0.02). In experiment 3, conceptuses were recovered on days 16, 20 and 24 of pregnancy and incubated with [3H] AA to determine the effects of indomethacin on [3H] AA metabolism. In general, indomethacin (Id; 4 × 10−4 M) reduced (P<.05) the percentage of total dpm recovered as prostaglandins, but Id increased the release of chromatographic region I. Experiment 4 was conducted with day 16, 20 and 24 conceptuses to evaluate the time course of metabolism of [3H] AA, and the appearance of region I and of prostaglandins. In general, the percentage of total dpm in region I increased as the percentage of dpm as [3H] AA decreased. The percentage of dpm as prostaglandins increased as the percentage of dpm in region I decreased. Prostaglandins, probably essential for embroynal survival and development, were synthesized in vitro by ovine conceptuses.  相似文献   

8.
The synthetic androgen methyltrienolone is superior to testosterone and androstenedione for the measurement of androgen receptor in tissues where the native ligands are metabolized into inactive derivatives. [3H]Methyltrienolone binds with a high affinity to androgen receptor in cytosol prepared from male rat livers, as the Scatchard analysis revealed that the Kd value was 3.3 · 10−8 M and the number of binding sites was 35.5 fmol/mg protein. Since methyltrienolone also binds glucocorticoid receptor which exists in rat liver, the apparent binding of androgen receptor is faulty when measured in the presence of glucocorticoid receptor. The binding of methyltrienolone to glucocorticoid receptor can be blocked by the presence of a 100-fold molar excess of unlabeled synthetic glucocorticoid, triamcinolone acetonide, without interfering in its binding to androgen receptor, because triamcinolone does not bind to androgen receptor. Triamcinolone-blocked cytosol exhibited that the Kd value was 2.5 · 10−8 M and the number of binding sites was 26.3 fmol/mg protein, indicating a reduction to of that in the untreated cytosol. The profile of glycerol gradient centrifiguration indicated that [3H]methyltriemolone-bound receptor migrated in the 8–9 S region in both untreated and triamcinolone-blocked cytosols, but the 8–9 S peak in triamcinolone-blocked cytosol was reduced to about of that of untreated cytosol.  相似文献   

9.
1. The fat mouse Steatomys pratensis natalensis (mean body mass 37.4±0.43 (se)) has a low euthermic body temperature Tb=30.1–33.8 °C and a low basal metabolic rate (BMR)=0.50 ml O2 g−1 h−1.
2. Below an ambient temperature (Ta)=15 °C, the mice were hypothermic.
3. The lowest survivable Ta=10 °C.
4. Torpor is efficient in conserving energy between Ta=15–30 °C, below Ta=15 °C, the mice arouse.
5. Euthermic and torpid mice were hyperthermic at Ta=35 °C.
6. Thermal conductance was 0.159 ml O2 g−1 h−1 °C−1, 98.8% of the expected value.
7. Non-shivering thermogenesis (NST) was 2.196 ml O2 g−1 h−1 (3.69×BMR).
8. Maximal oxygen consumption, however, was 3.83 ml O2 g−1 h−1 (6.44×BMR), indicating that other methods of heat production are additive.
9. Because fat mice conserve energy by torpor only between Ta=15–30 °C, we suggest that torpor may be a more important mechanism for surviving food shortages than for surviving cold weather.
Keywords: Steatomys pratensis natalensis; Metabolism; Torpor; Fat mouse  相似文献   

10.
[3H]norepinephrine binding to isolated rat fat cells was studied as a function of adipose cell age and size. Rats aged from 4 to 78 weeks were used.Scatchard analysis of norepinephrine binding revealed in old fat cells like in young ones the existence of two orders of binding sites with respectively high and low affinity for norepinephrine. The apparent association constants Ka1 and Ka2 associated with these binding sites did not differ consistently in the different groups of fat cells studied (Ka1 = 1.7 to 2.2 × 106 × M−1; Ka2 = 1.9 to 2.5 × 104 × M−1), suggesting that age and cell size do not modify the apparent affinity of norepinephrine-binding sites in rat fat cells.On the contrary, the total amount of norepinephrine bound to each of these sites was dependent upon cell age and size. In fact, maximum binding of norepinephrine to the high affinity sites was 0.9 and 9 pmol/105 cells in small (diameter: 35 μ) and large (diameter: 105 μ) adipocytes, respectively, the values found for the low affinity sites being 13 and 135 pmol/105 cells. When expressed per unit of fat cell area, however, the total binding capacity for these sites appeared practically constant (2.4 — 2.8 pmol × 10−3/mm2 and 34.2 — 38.2 pmol × 10−3/mm2 for the high and low affinity sites respectively). These data suggest that the total norepinephrine binding capacity of the fat cell is directly proportional to its surface.  相似文献   

11.
(Ph4P)4[Tl4Se16] was prepared hydrothermally in a sealed pyrex tube by the reaction of TlCl, K2Se4 and Ph4PCl in a 1:1:1 molar ratio at 110 °C for one day. The red crystals were obtained in 50% yield. Crystals of (Ph4P)4[Tl4Se16]: triclinic P (No. 2), Z=1, a=12.054(9), b=19.450(10), c=11.799(6) Å, α=104.63(4), β=98.86(6), γ=101.99(6)° and V=2555(3) Å3 at 23 °C, 2θmax=40.0°, μ=120.7 cm−1, Dcalc=2.23. The structure was solved by direct methods. Number of data collected: 5206. Number of unique data having Fo2>3σ(Fo2): 1723. Final R=0.075 and Rw=0.089. [Tl4Se16]4− consists of four, almost already linearly arranged, tetrahedral thallium centers which are coordinated by two chelating Se42−, two bridging Se22− and four bridging Se2− ligands. [Tl4Se16]4− sits on an inversion center and possesses a central {Tl2Se2}2+ planar core. The Tl(1)–Tl(1)′ distance in this core is 3.583(6) Å. These two thallium atoms are then each linked to two cyclic Tl(Se4) fragments via bridging Se22− and Se2− ligands forming Tl2Se(Se2) five-membered rings.  相似文献   

12.
Galactomannans isolated from legume seed endosperms, including those of commercial interest, have been characterized by multidetection aqueous SEC. Galactomannans derived from seeds of the Faboideae subfamily had substantially higher Mw than those from Caesalpinioideae seeds (Mw,Fab = 2.4–3.1 × 106 g/mol, Mw,Caes. = 0.86–2.1 × 106 g/mol) and within the latter botanical subfamily, an apparent correlation between Mw and the degree of galactose substitution DG was found. The molar mass distributions were unimodal and differed primarily by a scale factor, with distributional widths narrower than a true Flory ‘most-probable distribution’; good fits to Schulz–Zimm model were obtained. Across subfamilies no differences were found in the exponents of [η]–M and RvM relationships (0.61 ± 0.02, 0.54 ± 0.01, respectively), the Flory chain stiffness ratio (C = 20 ± 1 (BSF analysis)), or the persistence length (Lp = 5.5 ± 0.2 nm) obtained from SEC fraction data. However, it was found that prefactors in the [η]–M and RvM relationships as well as the unperturbed parameter KΘ decrease in proportion to DG and therefore chain density. Generalized relationships incorporating galactose-dependent prefactors were therefore developed to model SEC fraction data of native galactomannans ([η]GM = (1800 ± 200) × Mo−1.61 × M0.61±0.02, Rv,GM = 0.63 ± 0.05 × Mo−0.54 × M0.54±0.01) as well as lower-M fractions obtained by ultrasonication ([η]GM = (730 ± 100) × Mo−1.71 × Mw0.71±0.02, Rv,GM = 0.49 ± 0.05 × Mo−0.57 × Mw0.57±0.01, M ≈ 1 × 105-native). As a consequence of this dependence and the observed patterns in molar mass variation, [η] varies within a narrow range for galactomannans as a whole despite substantial Mw differences.  相似文献   

13.
The synthetic progestin 16α-ethyl-21-hydroxy-19-norpregn-4-ene-3,20-dione (Org 2058) was used to characterize the progesterone receptor in the uterine cytosol of the rabbit. [3H] Org 2058 binds to a homogeneous population of protin binding sites with an apparent association equilibrium constant of 7.7· 108 M−1 at 0°C. The concentration of protein-bound steroid at saturation is 2.3 pmol per mg of cytosol protein. [3H] Progesterone binds to the same set of binding sites but exhibits a 4–5 fold lower apparent association constant. The difference in affinity is mainly due to a 13-fold slower rate of dissociation of the synthetic progestin compared with progesterone. Org 2058 competes very efficiently for the binding of [3H] progesterone to the uterine cytosol, and progesterone also competes, although less efficiently, for the binding of [3H]-Org 2058. There is a good correlation between the progestational activity of various steroids and their ability to compete with [3H] Org 2058 binding to the cytosol. At 0°C, there is no metabolic transformation of either Org 2058 or progesterone in the uterine cytosol.When filled with the steroid, the progesterone receptor is stable, but in the absence of the steroid the receptor binding sites are thermolabile and show a rapid decay at 20°C . Org 2058 is more effective than progesterone in protecting the receptor against thermal inactivation. The rate constant of association and dissociation of [3H] Org 2058 and the cytosol receptor are strongly dependent on temperature and the activation energy of the dissociation reaction is 17.8 kcal/mol. The equilibrium association constant is less dependent on temperature and exhibits ΔH° of −4.7 kcal/mol. The binding reaction shows a positive entropy change of 23 cal · K−1 · mol−1.At low ionic strength the complex of Org 2058 and the progesterone receptor tends ot aggregate. It sediments as a broad peak on sucrose gradients (4–6 S), and is excluded from columns of Sephadex G-100 and G-200. At concentrations of NaCl above 0.15 M, the receptor sediments in sucrose gradients as an homogeneous peak at 3.6 S, but upon gel filtration it aggregates and a complex elution pattern is observed, that prevents a precise estimation of the molecular weight.  相似文献   

14.
Malate enzyme (l-malate : NADP+ oxidoreductase (oxalacetate-decarboxylating, EC 1.1.1.40)) has been purified from Pseudomonas putida to 99 per cent homogeneity by heat, ammonium suphate fractionation, gel filtration and anion exchange chromatography. Sodium dodecylsulphate-(SDS)-polyacrylamide disc gel electrophoresis analysis showed an approximate tetrameric subunit with a molecular weight of 52,000. The purified enzyme showed a pH optimum between 8.0 and 8.5 (for Tris-HCl buffer) and required bivalent cations for catalysis ; monovalent ions like K+ and NH4+ acted as very effective activators. The temperature-activity relationship for the malate enzyme from 35–80 °C showed broken Arrhenius plots with an inflexion at 65 °C. The enzyme halflife was 30s at 85 °C.The enzyme showed hyperbolic kinetics for both substrates with apparent Km values of 4.0 × 10−4 M and 2.3 × 10−5 M for l-malate and NADP+ respectively. From the study of the effects of some compounds on the enzyme, the physiological significance of those produced by fumarate, succinate and oxalacetate can be emphasized.  相似文献   

15.
Radioiodination of highly purified human follicle-stimulating hormone (hFSH) (4000 IU/mg) was performed every other week for 23 weeks using 2 mCi carrier free Na 125I (Amersham Corp., 15 mCi/μg I2) in the presence of lactoperoxidase. Incorporation of 125I into hFSH was determined by the method of [7.]Biochem. J. 89, 114). Hormone binding was studied in vitro under steady-state conditions (16 h, 20°C) using different calf testis membrane preparations having similar receptor characteristics. Each 125I-hFSH preparation was characterized for maximum bindability, specific activity of bindable radioligand as determined by self-displacement analysis, and by determination of Ka and Rt. Incorporation of 125I into FSH was relatively constant over the large number of experiments (62.4 ± 6.4 μCi/μg; n = 23). By comparison, however, specific radioactivity of the receptor bindable fraction of 125I-hFSH was related to the lot of 125I utilized, and was significantly (P ≤ 0.01) lower and more variable (28.7 ± 10.5 μCi/μg). Maximum bindability of 125I-hFSH was not correlated to specific activity (r = 0.06) but was negatively correlated to hFSH 125I incorporation (r = −0.47; P ≤ 0.05). These observations demonstrate the need to assess the quality of each batch of radioligand before undertaking radioligand-receptor assays and suggest that differences in Na125I lots affect specific radioactivity of the radioligand and its receptor binding characteristics.  相似文献   

16.
Laccase-catalyzed oxidation of phenolic compounds in organic media   总被引:1,自引:0,他引:1  
Rhus vernificera laccase-catalyzed oxidation of phenolic compounds, i.e., (+)-catechin, (−)-epicatechin and catechol, was carried out in selected organic solvents to search for the favorable reaction medium. The investigation on reaction parameters showed that optimal laccase activity was obtained in hexane at 30 °C, pH 7.75 for the oxidation of (+)-catechin as well as for (−)-epicatechin, and in toluene at 35 °C, pH 7.25 for the oxidation of catechol. Ea and Q10 values of the biocatalysis in the reaction media of the larger log p solvents like isooctane and hexane were relatively higher than those in the reaction media of lower log p solvents like toluene and dichloromethane. Maximum laccase activity in the organic media was found with 6.5% of buffer as co-solvent. A wider range of 0–28 μg protein/ml in hexane than that of 0–16.7 μg protein/ml in aqueous medium was observed for the linear increasing conversion of (+)-catechin. The kinetic studies revealed that in the presence of isooctane, hexane, toluene and dichloromethane, the Km values were 0.77, 0.97, 0.53 and 2.9 mmol/L for the substrate of (+)-catechin; 0.43, 0.34, 0.14 and 3.4 mmol/L for (−)-epicatechin; 2.9, 1.8, 0.61 and 1.1 mmol/L for catechol, respectively, while the corresponding Vmax values were 2.1 × 10−2, 2.3 × 10−2, 0.65 × 10−2 and 0.71 × 10−2 δA/μg protein min); 1.8 × 10−2, 0.88 × 10−2, 0.19 × 10−2 and 1.0 × 10−2 δA/μg protein min); 0.48 × 10−2, 0.59 × 10−2, 0.67 × 10−2 and 0.54 × 10−2 δA/μg protein min), respectively. FT-IR indicated the formation of probable dimer from (+)-catechin in organic solvent. These results suggest that this laccase has higher catalytic oxidation capacity of phenolic compounds in suitable organic media and favorite oligomers could be obtained.  相似文献   

17.
The ability of methyllycaconitine (MLA) to inhibit the binding of [125I]α-bungarotoxin to rat brain membranes, frog and human muscle extracts and the human muscle cell line TE671 has been measured. MLA showed a markedly higher affinity for the rat brain site (Ki 1.4 × 10−9 M) than for the muscle receptors (Ki; 10−5-10−6 M). Structure modelling techniques were used to fit the structure of MLA to a nicotinic pharmacophore model. MLA is the first low molecular weight ligand to be shown to discriminate between muscle nicotinic receptors and their α-bungarotoxinbinding counterpart in the brain, and as such may be a useful structural probe for pursuing the structural and functional properties of the neuronal protein.  相似文献   

18.
The antagonist [3H]idazoxan binds with comparable affinity to α2 adrenergic receptors and to phentolamine-displaceable non-stereoselective sites in human frontal cortex membranes. In contrast, idazoxan analogs possessing alkyl and alkoxy substituents at the 2-position of the benzodioxan moiety (i.e. RX 821002: 2-methoxy-1,4-[6,7-3H]benzodioxan-2-yl-2-imidazolin HCl, 43.8 Ci/mmol) possess 300–1200 times lower affinity for the non-stereoselective sites. Their affinity for the α2 receptors is increased as well, resulting in more than a 1000-fold selectivity towards the receptors as compared to the non-stereoselective sites. [3H]RX 821002, the 2-methoxy analog of idazoxan possesses an approx. 10-fold higher affinity for the α2 receptors (KD = 2.8 nM than [3H]idazoxan (KD = 24 nM) and about equal affinity as [3H]rauwolscine (KD = 3.6 nM).[3H]Rauwolscine binds with comparable affinity to α2 receptors and to 5-HT1A receptors, and competition studies indicate that the Ki value of unlabelled RX 821002 for the 5-HT1A receptors (30 nM) is about one order in magnitude above its Ki value for the α2 receptors (4.1 nM). Labelling of the 5-HT1A receptors by [3H]RX 821002 and by [3H]rauwolscine can be prevented by selective masking with 8-OH-DPAT (30 nM) or 5-HT (0.3 μM). Under these conditions, specific binding of [3H]RX 821002 to the α2 receptors represents 84% of total binding (at its KD), as compared to 77% for [3H]rauwolscine and 20% for [3H]idazoxan.[3H]RX 821002 labels the α2 receptors as a single class of non-cooperative sites. Association and dissociation kinetics are very fast at 37°C. Antagonist competition curves are steep with Hill coefficients close to one and the agonist curves can be analysed in terms of two affinity sites, confirming the antagonistic properties of [3H]RX821002. About 60% of the α2 receptors possess high agonist affinity.  相似文献   

19.
A highly sensitive, kinetically unambiguous assay for α-factor-induced delay of cell passage through the “start” step of cell division in yeast is presented. The assay employs perfusion with periodic microscopy to monitor the bud emergence kinetics on the 20% of cells within an exponentially growing population which exist prior to the α-factor execution point of start. The t1/2 for cell passage through start by this population of cells is 31 min in the absence of α-factor. The inhibition constant, KI, represents the α-factor concentration which produces a 50% inhibition of this rate and is equal to 2×10−10M. A second assay for maximal cell division arrest by α-factor on whole populations of cells is presented. This assay shows a maximum cell division arrest time of 125±5 h at saturating α-factor, and a K50 (that is, an α-factor concentration which produces a half-maximal response) of 2.5×10−8M. Both assays were performed in the effective absence of α-factor inactivation. Values of the dissociation constant KD and total number of receptors per cell which specifically mediate cell division arrest or delay were estimated to be 2.5×10−8M and 104, respectively. These estimates, along with the quantitative dose-response data for division arrest which are presented here, are consistent with each receptor·α-factor complex which is present on the cell at equilibrium producing a 43±10 s delay of cell passage through start. Surprisingly, this number is constant within twofold over the entire range of cellular division arrest responses to α-factor, that is, from a 1.9-fold inhibition of the rate of cell passage through start at 0.17 nM α-factor to a 125±5 h maximum arrest at saturating α-factor concentrations of >170 nM. The possible significance of this observation toward the mechanism of α-factor-induced cell division arrest is discussed.  相似文献   

20.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号