首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of Lagenidium giganteum growth in liquid and solid cultures   总被引:1,自引:0,他引:1  
AIMS: Production of the mosquito biolarvacide Lagenidium giganteum in solid culture has been proposed as an economic alternative to production in liquid culture because of observations of improved shelf life and efficacy upon storage. Understanding the differences between these production systems and estimating growth rate in solid culture are important for commercialization. In order to address these needs a logistic model was developed to describe the growth kinetics of L. giganteum produced in solid and liquid cultures. METHODS AND RESULTS: Kinetic parameters in the logistic model were estimated by nonlinear regression of CO2 evolution rate (CER) and biomass data from solid and liquid cultivation experiments. Lagenidium giganteum biomass was measured using DNA extracted directly from samples. The logistic model was fit to experimental biomass and CER data with low standard errors for parameter estimates. The model was validated in two independent experiments by examining prediction of biomass using on-line CER measurements. CONCLUSIONS: There were significant differences between maximum biomass density, maintenance coefficients, and specific growth rates for liquid and solid cultures. The maximum biomass density (mg dw ml-1) was 11 times greater for solid cultivation compared with liquid cultivation of L. giganteum; however, the maintenance coefficient (mg CO2 h-1 (mg dw)-1) was six times greater for liquid cultivation than in solid cultivation. The specific growth rate at 30 degrees C was approximately 30% greater in liquid cultivation compared with solid cultivation. Slower depletion of substrate and lower endogenous metabolism may explain the longer shelf life of L. giganteum produced in solid culture. SIGNIFICANCE AND IMPACT OF THE STUDY: A simple logistic model was developed which allows real-time estimation of L. giganteum biomass from on-line CER measurements. Parameter estimates for liquid and solid cultivation models also elucidated observations of longer shelf life for production in solid culture.  相似文献   

2.
In order to study and control fermentation processes, indirect on-tine measurements and mathematical models can be used. In this article we present a mathematical on-line model for fermentation processes. The model is based on atom and partial mass balances as well as on equations describing the acid-base system. The model is brought into an adaptive form by including transport equations for mass transfer and unstructured expressions for the fermentation kinetics. The state of the process, i.e., the concentrations of biomass, substrate, and products, can be estimated on-line using the balance part of the model completed with measurement equations for the input and output flows of the process. Adaptivity is realized by means of on-line estimation of parameters in the transport and kinetic expressions using recursive regression analysis. These expressions can thus be used in the model as valid equations enabling prediction of the process. This makes model-based automation of the process and testing of the validity of the measurement variables possible. The model and the on-line principles are applied to a 3.5-L laboratory tormentor in which Saccharomyces cerevisiae is cultivated. The experimental results show that the model-based estimation of the state and the predictions of the process correlate closely with high-performance liquid chromatography (HPLC) analyses. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
The recent process analytical technology (PAT) initiative has put an increased focus on online sensors to generate process-relevant information in real time. Specifically for fermentation, however, introduction of online sensors is often far from straightforward, and online measurement of biomass is one of the best examples. The purpose of this study was therefore to compare the performance of various online biomass sensors, and secondly to demonstrate their use in early development of a filamentous cultivation process. Eight Streptomyces coelicolor fed-batch cultivations were run as part of process development in which the pH, the feeding strategy, and the medium composition were varied. The cultivations were monitored in situ using multi-wavelength fluorescence (MWF) spectroscopy, scanning dielectric (DE) spectroscopy, and turbidity measurements. In addition, we logged all of the classical cultivation data, such as the carbon dioxide evolution rate (CER) and the concentration of dissolved oxygen. Prediction models for the biomass concentrations were estimated on the basis of the individual sensors and on combinations of the sensors. The results showed that the more advanced sensors based on MWF and scanning DE spectroscopy did not offer any advantages over the simpler sensors based on dual frequency DE spectroscopy, turbidity, and CER measurements for prediction of biomass concentration. By combining CER, DE spectroscopy, and turbidity measurements, the prediction error was reduced to 1.5 g/l, corresponding to 6% of the covered biomass range. Moreover, by using multiple sensors it was possible to check the quality of the individual predictions and switch between the sensors in real time.  相似文献   

4.
On-line monitoring of insect cell cultures used for the production of recombinant proteins with the baculovirus expression vector system (BEVS) provides valuable tools for the optimization, operation, and control of the production process. The relative permittivity (epsilon') and CO(2) evolution rates (CER) were measured on-line using the biomass monitor and the infrared CO(2) analyzer, respectively. The growth and infection phases of two different cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni(High-5), were monitored using the above measurements. These in turn were correlated to the progress of the culture by using the off-line measurements of protein produced, virus titer, and biovolume, which is the product of viable cell density and mean cell volume. The epsilon', CER, and the biovolume profiles were closely matched during the growth phase of cells when grown in a batch or fed batch culture. The relationship became more complex when the cultures were either in stationary phase or in the postinfection phase. The epsilon' profile was found to be a good indicator of the process of synchronous baculoviral infection, showing a plateau between 18 and 24 h postinfection (hpi), the period during which budded virus is produced, and a peak at approximately 48 hpi correlated to the onset of accelerated cell lysis. The CER profile continues to increase after the growth period with a peak around the 24 hpi period, after which there is a decline in the profile corresponding to release of virus as seen from virus titer determinations. This was examined for Sf-9 cultures under conditions of cell densities from 3 to 50 x 10(6) cells/mL and MOI values ranging from 0.001 to 1000. The profiles were found to be similar also in the case of the High-5 cells. Thus both measurements give reliable information regarding the physiological status of the cells as seen from their correlation to virus and protein production. A further combination of these with the off-line measured parameters such as the biovolume and metabolite concentrations can give a more detailed understanding of the process and help in the better design and automation of these processes.  相似文献   

5.
In many anaerobic fermentation processes, high energy bonds in adenosine triphosphate (ATP) are produced when available electrons are converted from organic substrate into extracellular organic products such as ethanol. The true growth yield and maintenance parameters are directly related to the product formation kinetic parameters for these anaerobic processes. Methods are presented which allow all of the experimental measurements to be used simultaneously to estimate these parameters. Results are presented for several different anaerobic fermentations.  相似文献   

6.
在发酵生产利福霉素SV的过程中,其菌丝体的生长代谢情况及产物发酵合成都与有活力的菌丝量密切相关.介绍了在线活细胞传感仪测定活细胞量的方法,它利用细胞的介电特性,能够排除发酵液中固含物的干扰,测得的电容值与活细胞浓度呈线性相关,可以作为工艺优化过程中的关键参数.通过电容变化反映的前期生长出现的二次生长现象,进行了通过使用迟效氮源豆饼粉代替了原培养基中价格昂贵的速效氮源蛋白胨,成功消除了发酵前期由于氮源利用转换造成的生长停滞期,利用豆饼粉情况下培养前期的OUR和CER达到了14.8和15.3 mmol/L/h,明显高于利用速效氮源蛋白胨A组的8.6和11.3 mmol/L/h,保证了持续较高的比生长速率,对于促进菌体的氧消耗速率的增加和维持有着重要的作用,明显有利于利福霉素的合成与速率的维持,氮源替代组的发酵效价达到了5969±19 U/ml,与对照组(5030±17U/ml)相比显著提升发酵单位18.7%以上.  相似文献   

7.
Native culture fluorescence was investigated as an additional source of information for predicting biomass and glucose concentrations in a fed-batch fermentation of Alcaligenes eutrophus. Partial least squares (PLS) regression and a feed forward neural network (FFNN) coupled with principle component analysis (PCA) were each used to model the kinetics of the fermentation. Data from three fermentations was combined to form a training set for model calibration and data from a fourth fermentation was used as the testing set. The fluorescent soft-sensors were compared with a previously developed feed forward neural network soft-sensor model which used oxygen uptake rate (OUR), carbon dioxide evolution rate (CER), aeration rate, feed rate, and fermentor volume to estimate biomass and glucose concentrations. The best model performance for predicting both biomass and glucose concentrations was achieved using the native fluorescence-based models. Real data predictions of the biomass concentration in the testing set were obtained using both the PLS and FFNN PCA modeling utilizing fluorescence measurements plus the rate of change of the fluorescence measurements. Accurate predictions of the glucose concentration in the testing set were obtained using the FFNN PCA modeling technique utilizing the rate of change of the fluorescence measurements. Substrate exhaustion was indicated qualitatively by a first-order PLS model utilizing the rate of change of fluorescence measurements. These results indicate that native culture fluorescence shows promise for providing additional valuable information to enhance predictive modeling which cannot be extracted from other easily acquired measurements.  相似文献   

8.
The total concentration of dissolved carbon dioxide in fermentation broths is one to two orders of magnitude greater than that of oxygen for pH > 6.5. The rate of change in this total concentration can be sufficiently large to produce a discrepancy between the carbon dioxide transfer rate (CTR) across the gas-liquid interface, available from gas analyses, and the carbon dioxide evolution rate (CER) of biomass in the fermentor. The CER is the variable of most interest to fermentation technologists but cannot be measured directly. The CTR is commonly used to yield the measured respiratory quotient (called here the TQ, or transfer quotient). Evaluation of the real underlying respiratory quotient (RQ), however, requiures the unmeasureable CER. Equations defining the problem are presented and are found to accurately predict the discrepancy between the TQ and the RQ in fed-batch fermentations of Escherichia coli. During the exponential growth phase, the TQ is less than the RQ. A changing pH can cause the TQ to be bigger or smaller than the RQ, while pH fluctuations associated with on-off pH controller action make the CTR and hence the TQ noisy. The RQ is estimated on-line during an E. coli fermentation and is shown to be constant during the fermentation, even though the TQ varies greatly. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.
Effect of operating conditions on solid substrate fermentation   总被引:3,自引:0,他引:3  
In this work the effects of environmental parameters on the performance of solid substrate fermentation (SSF) for protein production are studied. These parameters are (i) air flow rate, (ii) inlet air relative humidity, (iii) inlet air temperature, and (iv) the heat transfer coefficient between the outer wall of the fermentor and the air in the incubator. The air flow is supplied to effect cooling of the fermented mass by evaporation of water. A dynamic model is developed, which permits estimation of biomass content, total dry matter, moisture content, and temperature of the fermented matter. The model includes the effects of temperature and moisture content on both the maximum specific growth rate and the maximum attainable biomass content. The results of the simulation are compared with actual experimental data and show good agreement with them. The most important conclusions are that (i) the evaporative cooling of the biomass is very effective for temperature control and (ii) the air flow rate and the heat transfer coefficient have strong effects but they affect the biomass morphology and are not controllable easily. Also, a simple technique for the determination of the optimum temperature and moisture content profile for cell protein production is applied. The simulated biomass production increases considerably employing the optimum temperature and moisture content profiles. The ultimate goal is to implement the determined effects of the environmental parameters on the SSF biomass production and the temperature and moisture variation profiles to effectively control the SSF and optimize the biomass production. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
11.
A new procedure is presented to determine Monod kinetic coefficients and the microbial yield coefficient for volatile hydrophobic compounds such as phenanthrene. Batch experiments were conducted with a mixed culture capable of degrading phenanthrene. The phenanthrene disappearance and carbon dioxide production were monitored with time. A maximum likelihood estimator was formulated to fit the set of equations that describe the system to the measured data. The model takes into account a number of processes such as partition onto the apparatus, volatilization, and partition onto the biomass. The parameters required to describe these processes were obtained by independent experiments. The yield coefficient could be determined within a small range. However, the specific growth rate and the half-saturation constant were found to vary widely, with pairs of them describing the system adequately. It was shown that partition and volatilization processes can significantly affect the determination of the yield and Monod kinetic coefficients and need to be taken into account. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
A general method for the development of fermentation models, based on elemental and metabolic balances, is illustrated with three examples from the literature. Physiological parameters such as the (maximal) yield on ATP, the energetic maintenance coefficient, the P/O ratio and others are estimated by fitting model equations to experimental data. Further, phenomenological relations concerning kinetics of product formation and limiting enzyme activities are assessed. The results are compared with the conclusions of the original articles, and differences due to the application of improved models are discussed.  相似文献   

13.
研究了金龟子绿僵菌IMI330189的液体发酵动力学。利用Sigmoid函数构建了该菌株液体发酵过程中的菌体生长和底物消耗的动力学模型,并运用Origin7.5软件拟合求解出各模型参数。结果表明,模型能够较好地拟合绿僵菌IMI330189液体发酵过程,其比生长速率在发酵第22.8h达到最大值,为0.084h-1;总糖比消耗速率在第9.6h达到最大值,为0.246h-1;总氮比消耗速率在第10.3h达到最大值,为0.007h-1;菌体对总糖的得率系数在39.8h达到最高,为0.861g/g。模型拟合和实验数据具有良好的适应性,基本反映了绿僵菌IMI330189液体发酵过程的动力学特征,为其液体发酵工艺的优化和发展奠定了基础。  相似文献   

14.
A procedure for estimating biomass during batch fermentation from on-line gas analysis is presented. First, the respiratory quotient was used to determine the fraction of the total oxygen utilization rate required for cell maintenance and growth versus product synthesis. The modified oxygen utilization rate was then used to estimate biomass on-line by integrating the oxygen balance for cell synthesis-maintenance. The method is illustrated for the case of L-lysine synthesis by Corynebacterium glutamicum.List of Symbols CER mmol CO2/l · h carbon dioxide evolution rate - M O 2/x mmol O2/h · g cells maintenance coefficient - OUR mmol O2/l · h oxygen utilization rate - OUR X mmol O2/l · h OUR fraction for cell maintenance and growth - RQ mmol CO2/mmol O2 respiratory quotient(CER/OUR) - X g cells/l biomass concentration - Y X/O2 yield coefficients  相似文献   

15.
Comparison of the equations that describe the relationship between the maximum cell yield coefficient, the maintenance coefficient, and the specific growth rate at steady-state conditions revealed that the equations used for axenic cultures are congruent with those commonly used for mixed-culture system such as activated sludge. A unified basis was proposed. The expression of the yield and maintenance coefficients in carbon units according to the unified basis permitted one to evaluate literature data on both axenic and mixed-culture systems. From this it appears that the maximum cell yield ranges from 0.50–0.80 (mg biomass carbon formed/mg substrate carbon used) for both axenic and mixed systems. However, the maintenance coefficient (mg substrate C/mg biomass C·hr) for the axenic cultures was between 0.010 and 0.100, but for activated sludge communities it was between 0.001 and 0.010. Microorganisms were isolated from sludge communities with these apparently low maintenance requirements and grown axenilly. Their maintenance coefficients but not their maximum yield coefficients decreased with decreasing specific growth rates. The consequences of this finding with regard to species selection in mixed-culture systems and the concept of cellular maintenance requirement are discussed.  相似文献   

16.
We describe an algorithm for the continuous monitoring of the biomass and ethanol concentrations as well as the growth rate in the Mezcal fermentation process. The algorithm performs its task having available only the online measurements of the redox potential. The procedure combines an artificial neural network (ANN) that relates the redox potential to the ethanol and biomass concentrations with a nonlinear observer-based algorithm that uses the ANN biomass estimations to infer the growth rate of this fermentation process. The results show that the redox potential is a valuable indicator of the metabolic activity of the microorganisms during Mezcal fermentation. In addition, the estimated growth rate can be considered as a direct evidence of the presence of mixed culture growth in the process. Usually, mixtures of microorganisms could be intuitively clear in this kind of processes; however, the total biomass data do not provide definite evidence by themselves. In this paper, the detailed design of the software sensor as well as its experimental application is presented at the laboratory level.  相似文献   

17.
Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Mass-energy balance equations are developed which relate the biomass energetic yield coefficient to sets of variables which may be determined experimentally. Organic substrate consumption, biomass production, oxygen consumption, carbon dioxide production, heat evolution, and nitrogen consumption are considered as measured variables. Application of the balances using direct and indirect methods of yield coefficient estimation is illustrated using experimental results from the literature. Product formation is included in the balance equations and the effect of product formation on biomass yield estimates is examined. Application of mass-energy balances in the optimal operation of continuous single-cell protein production facilities is examined, and the variation of optimal operating conditions with changes in yield are illustrated for methanol as organic substrate.  相似文献   

18.
Due to the lack of suitable in-process sensors, on-line monitoring of fermentation processes is restricted almost exclusively to the measurement of physical parameters only indirectly related to key process variables, i.e., substrate, product, and biomass concentration. This obstacle can be overcome by near infrared (NIR) spectroscopy, which allows not only real-time process monitoring, but also automated process control, provided that NIR-generated information is fed to a suitable computerized bioreactor control system. Once the relevant calibrations have been obtained, substrate, biomass and product concentration can be evaluated on-line and used by the bioreactor control system to manage the fermentation. In this work, an NIR-based control system allowed the full automation of a small-scale pilot plant for lactic acid production and provided an excellent tool for process optimization. The growth-inhibiting effect of lactic acid present in the culture broth is enhanced when the growth-limiting substrate, glucose, is also present at relatively high concentrations. Both combined factors can result in a severe reduction of the performance of the lactate production process. A dedicated software enabling on-line NIR data acquisition and reduction, and automated process management through feed addition, culture removal and/or product recovery by microfiltration was developed in order to allow the implementation of continuous fermentation processes with recycling of culture medium and cell recycling. Both operation modes were tested at different dilution rates and the respective cultivation parameters observed were compared with those obtained in a conventional continuous fermentation. Steady states were obtained in both modes with high performance on lactate production. The highest lactate volumetric productivity, 138 g L(-1) h(-1), was obtained in continuous fermentation with cell recycling.  相似文献   

19.
20.
Membrane bioreactors (MBRs) are combinations of common bioreactors and membrane separation units for biomass retention. Through increased biomass concentration, they allow increased productivity (or smaller reactor volume, respectively). Besides high biomass concentrations, operation at very low growth rates is typical for MBRs. In this regime, maintenance metabolism where substrate uptake only yields energy for cell survival becomes of higher importance than in processes run at higher growth rates. While thermodynamically based correlations for the prediction of maintenance coefficients are available for chemostat or other medium growth rate processes, some authors have mentioned a change in energy demand in MBRs and a dependence of maintenance parameters on operating conditions. Due to the fact that often mixed cultures are used and resulting from the different evaluation methods used by different authors, views on the possible influences on maintenance parameters differ. However, it is accepted that common models describing microbial growth and production of metabolites or degradation of pollutants do not consider the effects caused by severe limitations and therefore cannot sufficiently be applied to MBRs. In this study, maintenance parameters were determined for a model organism (Ustilago maydis) and results from different evaluation methods were compared. A continuous fit of respiration data gave more consistent results than the traditional method of plotting specific uptake versus growth rate. They suggest that below micro = 10% micro(max) the maintenance coefficient drops to a third of the value in short-term limited cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号