首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Coiled coils are protein structure domains with two or more α-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a “periodic table of coiled coils,” which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of α-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.  相似文献   

2.
John Seo  Carolyn Cohen 《Proteins》1993,15(3):223-234
Two complementary methods for measuring local pitch based on heptad position in α-helical coiled coils are described and applied to six crystal structures. The results reveal a diversity of pitch values: two-stranded coiled coils appear to have pitch values near 150 Å the values for three- and four-stranded coiled coils range closer to 200 Å. The methods also provide a rapid and sensitive gauge of local coiled-coil conformation. Polar or charged residues in the apolar interface between coiled-coil helices markedly affect local pitch values, suggesting a connection between pitch uniformity and coiled-coil stability. Moreover, the identification of a skip residue (heptad frame shift) in the hemaglutinin glycoprotein of influenza virus (HA) allows interpretation of local pitch changes. These results on relatively short coiled-coil structures have relevance for the much longer fibrous proteins (many of which have skip residues) whose detailed structures are not yet established. We also show that local pitch values from molecular dynamics predictions of the GCN4 leucine zipper are in striking agreement with the high-resolution crystal structure—a result not readily discerned by direct comparison of atomic coordinates. Taken together, these methods reveal specific aspects of coiled-coil structure which may escape detection by global analyses of pitch. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Because the space of folded protein structures is highly degenerate, with recurring secondary and tertiary motifs, methods for representing protein structure in terms of collective physically relevant coordinates are of great interest. By collapsing structural diversity to a handful of parameters, such methods can be used to delineate the space of designable structures (i.e., conformations that can be stabilized with a large number of sequences)—a crucial task for de novo protein design. We first demonstrate this on natural α-helical coiled coils using the Crick parameterization. We show that over 95% of known coiled-coil structures are within  1-Å Cα root mean square deviation of a Crick-ideal backbone. Derived parameters show that natural geometric space of coiled coils is highly restricted and can be represented by “allowed” conformations amidst a potential continuum of conformers. Allowed structures have (1) restricted axial offsets between helices, which differ starkly between parallel and anti-parallel structures; (2) preferred superhelical radii, which depend linearly on the oligomerization state; (3) pronounced radius-dependent a- and d-position amino acid propensities; and (4) discrete angles of rotation of helices about their axes, which are surprisingly independent of oligomerization state or orientation. In all, we estimate the space of designable coiled-coil structures to be reduced at least 160-fold relative to the space of geometrically feasible structures. To extend the benefits of structural parameterization to other systems, we developed a general mathematical framework for parameterizing arbitrary helical structures, which reduces to the Crick parameterization as a special case. The method is successfully validated on a set of non-coiled-coil helical bundles, frequent in channels and transporter proteins, which show significant helix bending but not supercoiling. Programs for coiled-coil parameter fitting and structure generation are provided via a web interface at http://www.gevorggrigoryan.com/cccp/, and code for generalized helical parameterization is available upon request.  相似文献   

4.
Coiled-coil motifs play essential roles in protein assembly and molecular recognition, and are therefore the targets of many ongoing structural and functional studies. However, owing to the dynamic nature of many of the smaller coiled-coil domains, crystallization for X-ray studies is very challenging. Determination of elongated structures using standard NMR approaches is inefficient and usually yields low-resolution structures due to accumulation of small errors over long distances. Here we describe a solution NMR approach based on residual dipolar couplings (RDCs) for rapid and accurate structure determination of coiled-coil dimers. Using this approach, we were able to determine the high-resolution structure of the coiled-coil domain of cGMP-dependent protein kinase Ialpha, a protein of previously unknown structure that is critical for physiological relaxation of vascular smooth muscle. This approach can be extended to solve coiled-coil structures with higher order assemblies.  相似文献   

5.
Coiled-coil motifs provide simple systems for studying molecular self-assembly. We designed two 28-residue peptides to assemble into an extended coiled-coil fiber. Complementary interactions in the core and flanking ion-pairs were used to direct staggered heterodimers. These had "sticky-ends" to promote the formation of long fibers. For comparison, we also synthesized a permuted version of one peptide to associate with the other peptide and form canonical heterodimers with "blunt-ends" that could not associate longitudinally. The assembly of both pairs was monitored in solution using circular dichroism spectroscopy. In each case, mixing the peptides led to increased and concentration-dependent circular dichroism signals at 222 nm, consistent with the desired alpha-helical structures. For the designed fiber-producing peptide mixture, we also observed a linear dichroism effect during flow orientation, indicative of the presence of long fibrous structures. X-ray fiber diffraction of partially aligned samples gave patterns indicative of coiled-coil structure. Furthermore, we used electron microscopy to visualize fiber formation directly. Interestingly, the fibers observed were at least several hundred micrometers long and 20 times thicker than expected for the dimeric coiled-coil design. This additional thickness implied lateral association of the designed structures. We propose that complementary features present in repeating structures of the type we describe promote lateral assembly, and that a similar mechanism may underlie fibrillogenesis in certain natural systems.  相似文献   

6.
Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.  相似文献   

7.
We have determined the crystal structure of the DUF16 domain of unknown function encoded by the gene MPN010 of Mycoplasma pneumoniae at 1.8 A resolution. The crystal structure revealed that this domain is composed of two separated homotrimeric coiled-coils. The shorter one consists of 11 highly conserved residues. The sequence comprises noncanonical heptad repeats that induce a right-handed coiled-coil structure. The longer one is composed of approximately nine heptad repeats. In this coiled-coil structure, there are three distinguishable regions that confer unique structural properties compared with other known homotrimeric coiled-coils. The first part, containing one stutter, is an unusual phenylalanine-rich region that is not found in any other coiled-coil structures. The second part is a highly conserved glutamine-rich region, frequently found in other trimeric coiled-coil structures. The last part is composed of prototype heptad repeats. The phylogenetic analysis of the DUF16 family together with a secondary structure prediction shows that the DUF16 family can be classified into five subclasses according to N-terminal sequences. Based on the structural comparison with other coiled-coil structures, a probable molecular function of the DUF16 family is discussed.  相似文献   

8.
The properties and characteristics shared by amyloid fibrils formed from disease and non-disease associated proteins that are unrelated in sequence and structure offer the prospect that model systems can be used to systematically assess the factors that predispose a native protein to form amyloid fibrils. Based on a de novo design approach, we recently reported a unique switch peptide model system, ccbeta, that forms a three-stranded coiled-coil structure at low temperatures and which can be easily converted to amyloid fibrils by increasing the temperature. To simplify the system further, we describe here the redesign of a two-stranded ccbeta coiled-coil variant and its detailed analysis by a variety of biophysical methods. Compared with the original design, the characteristics of the peptide make it even simpler to elucidate and validate fundamental principles of amyloid fibril-formation.  相似文献   

9.
Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H+ (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.  相似文献   

10.
An alpha-helical coiled-coil structure is one of the basic structural units in proteins. Hydrophilic residues at the hydrophobic positions in the coiled-coil structure play important roles in structures and functions of natural proteins. We reported here a peptide that formed a triple stranded alpha-helical coiled-coil showing the pH-dependent structural change. The peptide was designed to have two His residues at the hydrophobic positions of the center of the coiled-coil structure. The peptide folded into a triple stranded coiled-coil at neutral pH, while it unfolded at acidic pH. This construct is useful to create a protein that the structure or function is controlled by pH.  相似文献   

11.
12.
In situ investigations in living cell membranes are important to elucidate the dynamic behaviors of membrane proteins in complex biomembrane environments. Protein-specific labeling is a key technique for the detection of a target protein by fluorescence imaging. The use of post-translational labeling methods using a genetically encodable tag and synthetic probes targeting the tag offer a smaller label size, labeling with synthetic fluorophores, and precise control of the labeling ratio in multicolor labeling compared with conventional genetic fusions with fluorescent proteins. This review focuses on tag–probe labeling studies for live-cell analysis of membrane proteins based on heterodimeric peptide pairs that form coiled-coil structures. The robust and simple peptide–peptide interaction enables not only labeling of membrane proteins by noncovalent interactions, but also covalent crosslinking and acyl transfer reactions guided by coiled-coil assembly. A number of studies have demonstrated that membrane protein behaviors in live cells, such as internalization of receptors and the oligomeric states of various membrane proteins (G-protein-coupled receptors, epidermal growth factor receptors, influenza A M2 channel, and glycopholin A), can be precisely analyzed using coiled-coil labeling, indicating the potential of this labeling method in membrane protein research.  相似文献   

13.
Pendley SS  Yu YB  Cheatham TE 《Proteins》2009,74(3):612-629
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.  相似文献   

14.
This year marks the 50th anniversary of Crick’s seminal paper on the packing of α-helices into coiled-coil structures. The central tenet of Crick’s work is the interdigitation of side chains, which directs the helix–helix interactions; so called knobs-into-holes packing. Subsequent determinations of coiled-coil-protein sequences and structures confirmed the key features of Crick’s model and established it as a fundamental concept in structural biology. Recently, we developed a program, SOCKET, to recognise knobs-into-holes packing in protein structures, which we applied to the Protein Data Bank to compile a database of coiled-coil structures. In addition to classic structures, the database reveals 4-helix bundles and larger helical assemblies. Here, we describe how the more-complex structures can be understood by extending Crick’s principles for classic coiled coils. In the simplest case, each helix of a 2-stranded structure contributes a single seam of (core) knobs-into-holes to the helical interface. 3-, 4-, and 5-Stranded structures, however, are best considered as rings of helices with cycles of knobs-into-holes. These higher-order oligomers make additional (peripheral) knobs-into-holes that broaden the helical contacts. Combinations of core and peripheral knobs may be assigned to different sequence repeats offset within the same helix. Such multiple repeats lead to multi-faceted helices, which explain structures above dimers. For instance, coiled-coil oligomer state correlates with the offset of the different repeats along a sequence. In addition, certain multi-helix assemblies can be considered as conjoined coiled coils in which multi-faceted helices participate in more than one coiled-coil motif.  相似文献   

15.
16.
Bacillus subtilis (Bs) DivIVA comprises coiled-coil structures and self-associates forming a 10-12 mer complex in vitro. Using bioinformatic approaches, we determined that Enterococcus faecalis (Ef) DivIVA comprises four coiled-coil domains, one at the N-terminus, the second and the third in the central region of the protein and the fourth at the C-terminus. We determined that DivIVA(Ef) self-interacts and forms a 10-12 multimeric complex. Point mutations or deletions of the central regions predicted bioinformatically to disrupt the coiled-coil structures either eliminated or weakened DivIVA(Ef) self-interaction and reduced oligomerization. Mutations disrupting the N- and C-terminal coiled-coils of DivIVA(Ef) did not affect DivIVA(Ef) oligomerization. The introduction of DivIVA(Ef) mutations to both the N-terminal and the central coiled-coil domains were lethal unless rescued by expressing wild-type DivIVA(Ef) in trans. E. faecalis cells expressing these mutations displayed aberrant cell morphology, indicating disruption of the normal cell division phenotype. The results in E. faecalis also indicate that both the N-terminal and the central coiled-coil structures of DivIVA(Ef) are indispensable for proper biological function. Overexpression of wild-type DivIVA(Ef) in both rod-shaped and round Escherichia coli cells resulted in morphological changes, while the overexpression of DivIVA(Ef) mutations failed to induce such alterations.  相似文献   

17.
A detailed understanding of the mechanisms by which particular amino acid sequences can give rise to more than one folded structure, such as for proteins that undergo large conformational changes or misfolding, is a long-standing objective of protein chemistry. Here, we describe the crystal structures of a single coiled-coil peptide in distinct parallel and antiparallel tetrameric configurations and further describe the parallel or antiparallel crystal structures of several related peptide sequences; the antiparallel tetrameric assemblies represent the first crystal structures of GCN4-derived peptides exhibiting such a configuration. Intriguingly, substitution of a single solvent-exposed residue enabled the parallel coiled-coil tetramer GCN4-pLI to populate the antiparallel configuration, suggesting that the two configurations are close enough in energy for subtle sequence changes to have important structural consequences. We present a structural analysis of the small changes to the helix register and side-chain conformations that accommodate the two configurations and have supplemented these results using solution studies and a molecular dynamics energetic analysis using a replica exchange methodology. Considering the previous examples of structural nonspecificity in coiled-coil peptides, the findings reported here not only emphasize the predisposition of the coiled-coil motif to adopt multiple configurations but also call attention to the associated risk that observed crytstal structures may not represent the only (or even the major) species present in solution.  相似文献   

18.
Wise JG  Vogel PD 《Biophysical journal》2008,94(12):5040-5052
One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichiacoli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures.  相似文献   

19.
Libraries composed of linear and cyclic peptides cannot fully represent the higher order structures of most antigenic sites. To map the binding site of ligands or antibodies, a larger part of the three-dimensional space should be sampled. Because parallel synthesis of large arrays of peptides on hydrogels is restricted to relatively small peptides, a simple and robust homodimeric helical system was chosen for antigen presentation. First, it was established in an heterodimeric system that the 26-mer peptide could be synthesized and that the helical coiled-coil peptides interact in the hydrogel in a predictable manner. Next, libraries of homodimeric coiled coils were synthesized into which the epitope was grafted. Using dedicated helical dimeric and trimeric coiled-coil libraries, the epitopes of two anti-HIV-1 gp41 monoclonal antibodies known to interact with helical structures were mapped at high resolution. These mappings precisely reflect existing X-ray data, and the arrays can be applied to lead identification, epitope mapping, and systematic analysis of amino acid contribution to coiled-coil systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号