首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA capping by partially purified HeLa cell GTP:RNA guanylyltransferase has been shown to occur in the following sequence of two partial reactions involving a covalent protein-guanylate intermediate: (i) E(P68) + GTP in equilibrium E(P68-GMP) + PPi (ii) E(P68-GMP) + ppRNA in equilibrium GpppRNA + E(P68) Initially, the enzyme reacts with GTP in the absence of an RNA cap acceptor to form a covalent protein-guanylate complex. This complex consists of a GMP residue linked via a phosphoamide bond to a Mr = 68,000 protein. The enzyme then transfers the guanylate residue from the Mr = 68,000 polypeptide to the 5' end of diphosphate-terminated poly(a) to yield the capped derivative GpppA(pA)n. Both partial reactions have been shown to be reversible. In the reverse of Reaction i, E(P68--GMP) reacts with PPi to regenerate GTP. In the reverse of Reaction ii, the enzyme catalyzes the transfer of the 5'-GMP from capped RNA to the Mr = 68,000 protein to form protein-guanylate complex. A divalent cation is required for both partial reactions. The Mr = 68,000 protein is presumed to be a subunit of the HeLa guanylyltransferase. This interpretation is consistent with the sedimentation coefficient of 4.2 S of the native enzyme. Preliminary studies of RNA guanylyltransferase from mouse myeloma tumors suggest a similar mechanism of transguanylylation involving a Mr = 68,000 protein-guanylate complex. These data, in conjunction with previous studies of vaccinia virus guanylyltransferase (Shuman, S., and Hurwitz, J. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 187-191) suggests that covalent GMP-enzyme intermediates may be a general feature of the RNA capping reaction.  相似文献   

2.
Purification of mRNA guanylyltransferase from calf thymus.   总被引:5,自引:2,他引:3       下载免费PDF全文
mRNA guanylyltransferase has been extensively purified from calf thymus. A GTP-binding assay was used based on the observations by Shuman and Hurwitz (1981) and Venkatesan and Moss (1982) that vaccinia virus and HeLa cell mRNA guanylyltransferases bind the GMP moiety from GTP in the absence of an acceptor RNA. The mol. wt. of the purified enzyme from calf thymus, estimated by polyacrylamide gel electrophoresis in the presence of SDS, is 65 000. The major protein in the purified enzyme fraction comigrates with the peptide labelled with GMP. Based on scans of silver-stained polyacrylamide gels, mRNA guanylyltransferase constitutes greater than 50% of the protein in these fractions. The enzyme catalyzed the guanylylation at the 5' end of poly(A) with a mixture of diphosphate and triphosphate ends. No evidence was obtained for a direct interaction between mRNA guanylyltransferase and RNA polymerase B (II).  相似文献   

3.
4.
5.
Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.  相似文献   

6.
Yeast histidine tRNA guanylyltransferase (TGT) catalyzes in the presence of ATP the addition of GTP to the 5' end of eukaryotic cytoplasmic tRNAHis species. A study of the enzyme mechanism with purified protein showed that during the first step ATP is cleaved to AMP and PPi creating adenylylated TGT. In a second step the activated enzyme forms a stable complex with its cognate tRNA substrate. The 5'-phosphate of the tRNA is adenylylated by nucleotide transfer from the adenylylated guanylyltransferase to form A(5')pp(5')N at the 5'-end of the tRNA. Finally, the 3'-hydroxyl of GTP adds to the activated 5' terminus of the tRNA with the release of AMP. This mechanism of tRNAHis guanylyltransferase is very similar to that of RNA ligases. dATP can substitute for ATP in this reaction. Since among several guanosine compounds active in this reaction GTP is most efficiently added we believe that it is the natural substrate of TGT.  相似文献   

7.
A purified enzyme system isolated from vaccinia virus cores has been shown to modify the 5' termini of viral mRNA and synthetic poly(A) and poly(G) to form the structures m7G(5')pppA- and m7G(5')pppG-. The enzyme system has both guanylyltransferase and methyltransferase activities. The GTP:mRNA guanylyltransferase activity incorporates GMP into the 5' terminus via a 5'-5' triphosphate bond. The properties of this reaction are: (a) of the four nucleoside triphosphates only GTP is a donor, (b) mRNA with two phosphates at the 5' terminus is an acceptor while RNA with a single 5'-terminal phosphate is not, (c) Mg2+ is required, (d) the pH optimum is 7.8, (e) PP1 is a strong inhibitor, and (f) the reverse reaction, namely the formation of GTP from PP1 and RNA containing the 5'-terminal structure G(5')pppN-, readily occurs. The S-adenosylmethionine:mRNA(guanine-7-)methyltransferase activity catalyzes the methylation of the 5'-terminal guanosine. This reaction exhibits the following characteristics: (a) mRNA with the 5'-terminal sequences G(5')pppA- and G(5')pppG- are acceptors, (b) only position 7 of the terminal guanosine is methylated; internal or conventional 5'-terminal guanosine residues are not methylated, (c) the reaction is not dependent upon GTP or divalent cations, (d) optimal activity is observed in a broad pH range around neutrality, (e) the reaction is inhibited by S-adenosylhomocysteine. Both the guanylyltransferase and methyltransferase reactions exhibit bisubstrate kinetics and proceed via a sequential mechanism. The reactions may be summarized: (see article).  相似文献   

8.
GTP:mRNA guanylyltransferase, an enzyme that catalyzes the transfer of the GMP moiety from GTP to the 5' end of the RNA to form a cap structure (G(5')pppN-), has been purified to an apparent homogeneity from Saccharomyces cerevisiae. The mRNA 5'-triphosphatase activity hydrolyzing the gamma-phosphoryl group from pppN-RNA was co-purified with mRNA guanylyltransferase activity through column chromatographies on CM-Sephadex and poly(U)-Sepharose, and centrifugation through glycerol gradients, suggesting that these two activities are physically associated. An 820,w value of 7.3, and Mr = 140,000 were estimated from the sedimentation behavior in glycerol gradients. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two major polypeptides, Mr = 45,000 (alpha) and 39,000 (beta), were detected with the purified enzyme preparation. Their molar ratios were close to unity when estimated by the relative density of silver staining. These results suggest that the yeast mRNA-capping enzyme is an oligomeric protein which may consist of two alpha and two beta chains (alpha 2 beta 2).  相似文献   

9.
Characterization of the donor and acceptor specificities of mRNA guanylyltransferase and mRNA (guanine-7-)-methyltransferase isolated from vaccinia virus cores has enabled us to discriminate between alternative reaction sequences leading to the formation of the 5'-terminal m7G(5')pppN-structure. The mRNA guanylyltransferase catalyzes the transfer of a residue of GMP from GTP to acceptors which possess a 5'-terminal diphosphate. A diphosphate-terminated polyribonucleotide is preferred to a mononucleoside diphosphate as an acceptor suggesting that the guanylyltransferase reaction occurs after initiation of RNA synthesis. Although all of the homopolyribonucleotides tested (pp(A)n, pp(G)n, pp(I)n, pp(U)n, and pp(C)n) are acceptors for the mRNA guanylyltransferase indicating lack of strict sequence specificity, those containing purines are preferred. Only GTP and dGTP are donors in the reaction; 7-methylguanosine (m7G) triphosphate specifically is not a donor indicating that guanylylation must precede guanine-7-methylation. The preferred acceptor of the mRNA (guanine-7-)-methyltransferase is the product of the guanylyltransferase reaction, a polyribonucleotide with the 5'-terminal sequence G(5')pppN-. The enzyme can also catalyze, but less efficiently methylation of the following: dinucleoside triphosphates with the structure G(5')pppN, GTP, dGTP, ITP, GDP, GMP, and guanosine. The enzyme will not catalyze the transfer of methyl groups to ATP, XTP, CTP, UTP, or to guanosine-containing compounds with phosphate groups in either positions 2' or 3' or in 3'-5' phosphodiester linkages. The latter specificity provides an explanation for the absence of internal 7-methylguanosine in mRNA. In the presence of PPi, the mRNA guanylyltransferase catalyzes the pyrophosphorolysis of the dinucleoside triphosphate G(5')pppA, but not of m7G(5')pppA. Since PPi is generated in the process of RNA chain elongation, stabilization of the 5'-terminal sequences of mRNA is afforded by guanine-7-methylation.  相似文献   

10.
11.
Messenger RNA capping enzyme (GTP:mRNA guanylyltransferase) purified from yeast Saccharomyces cerevisiae consisted of two polypeptides (45 and 39 kDa) and possessed two enzymatic activities, i.e. mRNA guanylyltransferase and RNA 5'-triphosphatase (Itoh, N., Mizumoto, K., and Kaziro, Y. (1984) J. Biol. Chem. 259, 13923-13929). In this paper, we describe an improved procedure suitable for the large scale purification of the enzyme. The steps include glass beads disruption of the cells and several ion-exchange and affinity column chromatographies. The enzyme was purified from kilogram quantities of yeast cells to apparent homogeneity. The purified enzyme had an approximate Mr of 180,000 and consisted of two heterosubunits of 80 and 52 kDa and had the same two enzymatic activities as above. We consider that this is the more intact form of the enzyme. Using the in situ assays on sodium dodecyl sulfate-polyacrylamide gels, RNA 5'-triphosphatase, and mRNA guanylyltransferase activities were located on the 80- and 52-kDa chains, respectively. In agreement with this, the 52-kDa enzyme-[32P]GMP complex was formed on incubation of the enzyme with [alpha-32P]GTP. Guinea pig antisera against purified yeast capping enzyme recognized both 80- and 52-kDa chains in Western blot analysis. The antibody did not cross-react with the enzymes from rat liver. Artemia salina, or vaccinia virus. Nuclear localization of the enzyme was demonstrated by immunofluorescence microscopy.  相似文献   

12.
13.
A rapid and inexpensive method has been developed for the synthesis of 32P-labeled guanosine 5'-triphosphate (GTP). When yolk platelets isolated from brine shrimp cysts are incubated with 32PPi at pH 5.8 and in the presence of 10 mM MgCl2 and 5 mM dithiothreitol, the primary compound formed is [beta,gamma-32P]GTP. The synthetic reaction is catalyzed by the yolk platelet enzyme, GTP : GTP guanylyltransferase, which has been demonstrated to be important in the biosynthesis of diguanosine 5'-tetraphosphate (Gp4G), the major purine nucleotide in brine shrimp yolk platelets and encysted embryos.  相似文献   

14.
15.
A core-associated enzyme, which catalyzes a nucleotide-pyrophosphate exchange with GTP, has been purified from vaccinia virions. The enzyme requires MgCl2 for activity, has an alkaline pH optimum, and specifically utilizes GTP as the exchanging nucleotide. The enzyme does not catalyze exchange of GMP with GTP. The GTP-PPi exchange enzyme co-purifies with vaccinia capping enzyme (RNA guanylyltransferase and RNA (guanine-7-)methyltransferase) through successive chromatography steps on DEAE-cellulose, DNA-cellulose, and phosphocellulose. GTP-PPi exchange and capping activities remain physically associated during sedimentation in a glycerol gradient. Under high salt conditions (1 M NaCl), GTP-PPi exchange, capping, and methylating activities co-sediment with an RNA triphosphatase activity and a nucleoside triphosphate phosphohydrolase activity as a 6.5 S multifunctional enzyme complex which contains two major polypeptides of 96,000 and 26,000 molecular weight. The characteristics of the various enzymatic reactions catalyzed by this complex are described. The GTP-PPi exchange reaction of vaccinia guanylyltransferase affords a simple, sensitive assay for capping enzyme function. The relevance of the GTP-PPi exchange reaction to the mechanism of transguanylylation is considered.  相似文献   

16.
17.
18.
RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase activities are associated with the vaccinia virus mRNA capping enzyme, a heterodimeric protein containing polypeptides of Mr 95,000 and Mr 31,000. The genes encoding the large and small subunits (corresponding to the D1 and the D12 ORFs, respectively, of the viral genome) were coexpressed in Escherichia coli BL21 (DE3) under the control of a bacteriophage T7 promoter. Guanylyltransferase activity (assayed as the formation of a covalent enzyme-guanylate complex) was detected in soluble lysates of these bacteria. A 1000-fold purification of the guanylyltransferase was achieved by ammonium sulfate precipitation and chromatography using phosphocellulose and SP5PW columns. Partially purified guanylytransferase synthesized GpppA caps when provided with 5'-triphosphate-terminated poly(A) as a cap acceptor. In the presence of AdoMet the enzyme catalyzed concomitant cap methylation with 99% efficiency. Inclusion of S-adenosyl methionine increased both the rate and extent of RNA capping, permitting quantitative modification of RNA 5' ends. Guanylyltransferase sedimented as a single component of 6.5 S during further purification in a glycerol gradient; this S value is identical with that of the heterodimeric capping enzyme from vaccinia virions. Electrophoretic analysis showed a major polypeptide of Mr 95,000 cosedimenting with the guanylyltransferase. RNA triphosphatase activity cosedimented exactly with guanylyltransferase. Methyltransferase activity was associated with guanylyltransferase and was also present in less rapidly sedimenting fractions. The methyltransferase activity profile correlated with the presence of a Mr 31,000 polypeptide. These results indicate that the D1 and D12 gene products are together sufficient to catalyze all three enzymatic steps in cap synthesis. A model for the domain structure of this enzyme is proposed.  相似文献   

19.
To investigate the precise structure of eucaryotic primer RNA made in vivo, short DNA chains isolated from nuclei of Drosophila melanogaster embryos were analyzed. Post-labeling of 5' ends of short DNA chains with polynucleotide kinase and [gamma-32P]ATP revealed that 7% of the DNA fragments were covalently linked with mono- to octaribonucleotide primers at their 5' ends. Octaribonucleotides, the major component (ca. 30%), formed the cap structure in the reaction with vaccinia guanylyltransferase and [alpha-32P]GTP, indicating that they were the intact primer RNA with tri- (or di-) phosphate termini, and the shorter ribooligomers were degradation intermediates. The intact primers started with purine (A/G ratio, 4:1), and the starting few ribonucleotide residues were rich in A.  相似文献   

20.
An RNA guanylyltransferase activity is involved in the synthesis of the cap structure found at the 5' end of eukaryotic mRNAs. The RNA guanylyltransferase activity is a two-step ping-pong reaction in which the enzyme first reacts with GTP to produce the enzyme-GMP covalent intermediate with the concomitant release of pyrophosphate. In the second step of the reaction, the GMP moiety is then transferred to a diphosphorylated RNA. Both reactions were previously shown to be reversible. In this study, we report a biochemical and thermodynamic characterization of both steps of the reaction of the RNA guanylyltransferase from Paramecium bursaria Chlorella virus 1, the prototype of a family of viruses infecting green algae. Using a combination of real-time fluorescence spectroscopy, radioactive kinetic assays, and inhibition assays, the complete kinetic parameters of the RNA guanylyltransferase were determined. We produced a thermodynamic scheme for the progress of the reaction as a function of the energies involved in each step. We were able to demonstrate that the second step comprises the limiting steps for both the direct and reverse overall reactions. In both cases, the binding to the RNA substrates is the step requiring the highest energy and generating unstable intermediates that will promote the catalytic activites of the enzyme. This study reports the first thorough kinetic and thermodynamic characterization of the reaction catalyzed by an RNA capping enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号