首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The little R cell that could   总被引:5,自引:0,他引:5  
Drosophila eye development provides an excellent model system to study the role of inter-cellular signaling in the specification of unique cell fates. Behavioral screens by Benzer and his colleagues led to the identification of a gene, Sevenless, a receptor tyrosine kinase (RTK) receptor, required for the specification of the UV sensitive R7 cell. Genetic analysis further showed that the Ras/Raf/MAPK pathway function downstream of Sevenless in the specification of R7 fate. Signaling mediated by another RTK, EGFR and Notch have also been shown to function in either an antagonistic or a synergistic manner in the specification of cell fate during eye development. In some instances, these pathways are linked in a sequential manner by the regulation of the expression of Notch ligand, Delta by EGFR, while in others, these pathways function in a combinatorial fashion on enhancer elements to control target gene expression. In this review, we highlight the elegant genetic strategies used by several laboratories in early elucidation of the Sevenless pathway which helped link the RTK receptor to the Ras/Raf/MAPK cascade and discuss how EGFR and Notch signaling pathways are used in a reiterative manner and by combining in different modes, generate sufficient diversity required for the specification of unique cell fates.  相似文献   

2.
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.  相似文献   

3.
ABSTRACT

Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.  相似文献   

4.
In the developing Drosophila eye, cell fate determination and pattern formation are directed by cell-cell interactions mediated by signal transduction cascades. Mutations at the rugose locus (rg) result in a rough eye phenotype due to a disorganized retina and aberrant cone cell differentiation, which leads to reduction or complete loss of cone cells. The cone cell phenotype is sensitive to the level of rugose gene function. Molecular analyses show that rugose encodes a Drosophila A kinase anchor protein (DAKAP 550). Genetic interaction studies show that rugose interacts with the components of the EGFR- and Notch-mediated signaling pathways. Our results suggest that rg is required for correct retinal pattern formation and may function in cell fate determination through its interactions with the EGFR and Notch signaling pathways.  相似文献   

5.
6.
7.
RUGOSE (RG): encodes an A kinase anchor protein and was isolated as a genetic interactor of the Notch and epidermal growth factor receptor (EGFR) pathways during eye development in Drosophila. rg mutants display a small, rough eye phenotype primarily caused by the loss of cone cells. Here we show that the basis of this phenotype is cell type-specific apoptosis rather than transformation and hence can be rescued by reduction of proapoptotic signals. Moreover, a nearly complete rescue is observed by an increased Notch signal suggesting an antiapoptotic function of Notch in this developmental context. Cone cell loss in rg mutants is accompanied by enhanced Jun N-terminal kinase activity and, concomitantly, by a reduction of EGFR signalling activity. Together, these findings support the idea that rg plays an important role in the integration of different signals required for the exact regulation of cone cell development and survival.  相似文献   

8.
Cooper MT  Bray SJ 《Current biology : CB》2000,10(23):1507-1510
The eight photoreceptors in each ommatidium of the Drosophila eye are assembled by a process of recruitment [1,2]. First, the R8 cell is singled out, and then subsequent photoreceptors are added in pairs (R2 and R5, R3 and R4, R1 and R6) until the final R7 cell acquires a neuronal fate. R7 development requires the Sevenless receptor tyrosine kinase which is activated by a ligand from R8 [3]. Here, we report that the specification of R7 requires a second signal that activates Notch. We found that a Notch target gene is expressed in R7 shortly after recruitment. When Notch activity was reduced, the cell was misrouted to an R1/R6 fate. Conversely, when activated Notch was present in the R1/R6 cells, it caused them to adopt R7 fates or, occasionally, cone cell fates. In this context, Notch activity appears to act co-operatively, rather than antagonistically, with the receptor tyrosine kinase/Ras pathway in R7 photoreceptor specification. We propose two models: a ratchet model in which Notch would allow cells to remain competent to respond to sequential rounds of Ras signalling, and a combinatorial model in which Notch and Ras signalling would act together to regulate genes that determine cell fate.  相似文献   

9.
Drosophila sensory organ precursor (SOP) cells are a well-studied model system for asymmetric cell division. During SOP division, the determinants Numb and Neuralized segregate into the pIIb daughter cell and establish a distinct cell fate by regulating Notch/Delta signaling. Here, we describe a Numb- and Neuralized-independent mechanism that acts redundantly in cell-fate specification. We show that trafficking of the Notch ligand Delta is different in the two daughter cells. In pIIb, Delta passes through the recycling endosome which is marked by Rab 11. In pIIa, however, the recycling endosome does not form because the centrosome fails to recruit Nuclear fallout, a Rab 11 binding partner that is essential for recycling endosome formation. Using a mammalian cell culture system, we demonstrate that recycling endosomes are essential for Delta activity. Our results suggest that cells can regulate signaling pathways and influence their developmental fate by inhibiting the formation of individual endocytic compartments.  相似文献   

10.
Notch, Delta and Serrate encode transmembrane proteins that function in cell fate specification in the Drosophila melanogaster embryo. Here we report gene expression patterns and functional characterization of a Xenopus Serrate homolog, X-Serrate-1. The isolated cDNA encoded a transmembrane protein with a Delta/Serrate/LAG-2 domain, 16 epidermal growth factor-like repeats and a cysteine-rich region. Expression of X-Serrate-1 was observed ubiquitously from unfertilized egg to tadpole, but an upregulation occurred in the tailbud stage embryo. Adult expression was found in eye, brain, kidney, heart, spleen and ovary. Whole-mount in situ hybridization revealed that the organ-related expression in eye, brain, heart and kidney occurred from an early stage of rudiment formation. Overexpression of X-Serrate-1 led to a reduction of primary neurons, whereas an intracellularly deleted form of X-Serrate-1 increased the number of primary neurons. Although the function of X-Serrate-1 in primary neurogenesis was quite similar to that of X-Delta-1, expression of X-Serrate-1 and X-Delta-1 did not affect each other. Co-injection experiments showed that wild-type X-Serrate-1 and X-Delta-1 suppressed overproduction of primary neurons induced by dominant-negative forms of X-Delta-1 and X-Serrate-1, respectively. These results suggest that X-Serrate-1 regulates the patterning of primary neurons in a complementary manner with X-Delta-1-mediated Notch signaling.  相似文献   

11.
Voas MG  Rebay I 《Genetics》2003,165(4):1993-2006
The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye.  相似文献   

12.
13.
Combinatorial signaling in the specification of unique cell fates   总被引:15,自引:0,他引:15  
Flores GV  Duan H  Yan H  Nagaraj R  Fu W  Zou Y  Noll M  Banerjee U 《Cell》2000,103(1):75-85
  相似文献   

14.
15.
The Decapentaplegic and Notch signaling pathways are thought to direct regional specification in the Drosophila eye-antennal epithelium by controlling the expression of selector genes for the eye (Eyeless/Pax6, Eyes absent) and/or antenna (Distal-less). Here, we investigate the function of these signaling pathways in this process. We find that organ primordia formation is indeed controlled at the level of Decapentaplegic expression but critical steps in regional specification occur earlier than previously proposed. Contrary to previous findings, Notch does not specify eye field identity by promoting Eyeless expression but it influences eye primordium formation through its control of proliferation. Our analysis of Notch function reveals an important connection between proliferation, field size, and regional specification. We propose that field size modulates the interaction between the Decapentaplegic and Wingless pathways, thereby linking proliferation and patterning in eye primordium development.  相似文献   

16.
Early neurogenesis in the spider is characterised by a stereotyped pattern of sequential recruitment of neural cells from the neuroectoderm, comparable with neuroblast formation in Drosophila: However, in contrast to Drosophila, where single cells delaminate from the neuroectoderm, groups of cells adopt the neural fate and invaginate into the spider embryo. This raises the question of whether Delta/Notch signalling is involved in this process, as this system normally leads to a singling out of individual cells through lateral inhibition. I have therefore cloned homologues of Delta and Notch from the spider Cupiennius salei and studied their expression and function. The genes are indeed expressed during the formation of neural cells in the ventral neuroectoderm. Loss of function of either gene leads to an upregulation of the proneural genes and an altered morphology of the neuroectoderm that is comparable with Delta and Notch mutant phenotypes in Drosophila: Thus, although Delta/Notch signalling appears to be used in the same way as in Drosophila, the lateral inhibition process produces clusters of invaginating cells, rather than single cells. Intriguingly, neuroectodermal cells that are not invaginating seem to become neural cells at a later stage, while the epidermal cells are derived from lateral regions that overgrow the neuroectoderm. In this respect, the neuroectodermal region of the spider is more similar to the neural plate of vertebrates, than to the neuroectoderm of Drosophila:  相似文献   

17.
H Ruohola  K A Bremer  D Baker  J R Swedlow  L Y Jan  Y N Jan 《Cell》1991,66(3):433-449
Oogenesis in Drosophila involves specification of both germ cells and the surrounding somatic follicle cells, as well as the determination of oocyte polarity. We found that two neurogenic genes, Notch and Delta, are required in oogenesis. These genes encode membrane proteins with epidermal growth factor repeats and are essential in the decision of an embryonic ectodermal cell to take on the fate of neuroblast or epidermoblast. In oogenesis, mutation in either gene leads to an excess of posterior follicle cells, a cell fate change reminiscent of the hyperplasia of neuroblasts seen in neurogenic mutant embryos. Furthermore, the Notch mutation in somatic cells causes mislocalization of bicoid in the oocyte. These results suggest that the neurogenic genes Notch and Delta are involved in both follicle cell development and the establishment of anterior-posterior polarity in the oocyte.  相似文献   

18.
Asymmetric division of sensory organ precursors (SOPs) in Drosophila generates different cell types of the mature sensory organ. In a genetic screen designed to identify novel players in this process, we have isolated a mutation in Drosophila sec15, which encodes a component of the exocyst, an evolutionarily conserved complex implicated in intracellular vesicle transport. sec15(-) sensory organs contain extra neurons at the expense of support cells, a phenotype consistent with loss of Notch signaling. A vesicular compartment containing Notch, Sanpodo, and endocytosed Delta accumulates in basal areas of mutant SOPs. Based on the dynamic traffic of Sec15, its colocalization with the recycling endosomal marker Rab11, and the aberrant distribution of Rab11 in sec15 clones, we propose that a defect in Delta recycling causes cell fate transformation in sec15(-) sensory lineages. Our data indicate that Sec15 mediates a specific vesicle trafficking event to ensure proper neuronal fate specification in Drosophila.  相似文献   

19.
20.
L. B. Bender  P. J. Kooh    MAT. Muskavitch 《Genetics》1993,133(4):967-978
Delta (Dl) encodes a cell surface protein that mediates cell-cell interactions central to the specification of a variety of cell fates during embryonic and postembryonic development of Drosophila melanogaster. We find that the Delta protein is expressed intermittently in follicle cells and in germ-line cells during stages 1-10 of oogenesis. Furthermore, Delta expression during oogenesis can be correlated with a number of morphogenetic defects associated with sterility observed in Dl mutant females, including failure of stalk formation within the germarium and subsequent fusion of egg chambers, necrosis in germ-line cells, and multiphasic embryonic arrest of fertilized eggs. We have also identified a Dl mutation that leads to context-dependent defects in Dl function during oogenesis. Direct comparison of Delta protein expression with that of the Notch protein in the ovary reveals substantial, but incomplete, coincidence of expression patterns in space and time. We discuss possible roles for the Delta protein in cell-cell interactions required for cell fate specification processes during oogenesis in light of available developmental and histochemical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号