首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main physiological function of the lymphatic vasculature is to maintain tissue fluid homeostasis. Lymphangiogenesis or de novo lymphatic formation is closely associated with tissue inflammation in adults (i.e. wound healing, allograft rejection, tumor metastasis). Until recently, research on lymphangiogenesis focused mainly on growth factor/growth factor-receptor pathways governing this process. One of the lymphatic vessel features is the incomplete or absence of basement membrane. This close association of endothelial cells with the underlying interstitial matrix suggests that cell–matrix interactions play an important role in lymphangiogenesis and lymphatic functions. However, the exploration of interaction between extracellular matrix (ECM) components and lymphatic endothelial cells is in its infancy. Herein, we describe ECM–cell and cell–cell interactions on lymphatic system function and their modification occurring in pathologies including cancer metastasis.  相似文献   

2.
Hyaluronan (HA), a high molecular weight glycosaminoglycan in the extracellular matrix, has been implicated in the promotion of malignant phenotypes, including tumor angiogenesis. However, little is known about the effect of HA on tumor-associated lymphangiogenesis. In this study, mouse hepatocellular carcinoma Hca-F cells combined with or without HA were injected subcutaneously into C3H/Hej mice, then angiogenesis and lymphangiogenesis of implanted tumors were examined by immunostaining for plateletendothelial cell adhesion molecule-1 and lymphatic vascular endothelial hyaluronan receptor-1 respectively. Interestingly, we found HA promotes tumor lymphangiogenesis and the occurrence of intratumoral lymphatic vessels, but has little effect on tumor angiogenesis. Moreover, HA also promotes intralymphatic tumor growth, although it is not sufficient to potentiate lymphatic metastasis. These results suggest that HA, which is elevated in most malignant tumor stroma, may also play a role in tumor progression by promoting lymphangiogenesis.  相似文献   

3.
Corneal lymphangiogenesis plays a key role in diverse pathological conditions of the eye. Here, we demonstrate that a versatile extracellular matrix protein, transforming growth factor‐β induced protein (TGFBIp), promotes lymphatic sprouting in corneal lymphangiogenesis. TGFBIp is highly up‐regulated in inflamed mouse corneas. Immunolocalization of TGFBIp is detected in infiltrating macrophages in inflamed mouse corneas. Subconjunctival injection of liposomal clodronate can significantly reduce macrophage infiltration in inflamed mouse cornea, and decrease the expression of TGFBIp and areas of corneal lymphangiogenesis and angiogenesis after corneal suture placement. In brief, these results indicate that the up‐regulation of TGFBIp in sutured cornea correlates with macrophage infiltration. Although TGFBIp alone cannot significantly stimulate corneal lymph vessel ingrowth in vivo, it can enhance the effect of vascular endothelial growth factor‐C in promoting corneal lymphangiogenesis. The in vitro results show that TGFBIp promotes migration, tube formation and adhesion of human lymphatic endothelial cells (HLECs), but it has no effect on HLECs' proliferation. We also find that the in vitro effect of TGFBIp is mediated by the integrin α5β1‐FAK pathway. Additionally, integrin α5β1 blockade can significantly inhibit lymphatic sprouting induced by TGFBIp. Taken together, these findings reveal a new molecular mechanism of lymphangiogenesis in which the TGFBIp‐integrin pathways plays a pivotal role in lymphatic sprouting.  相似文献   

4.
Lymphangiogenesis, the growth of new lymph vessels, has important roles in both normal and pathological lymphatic function. Despite recent advances, the precise molecular mechanisms behind the lymphangiogenic process remain unclear. The Australian marbled gecko, Christinus marmoratus, voluntarily drops its tail (autotomy) as a predator avoidance strategy. Following autotomy a new tail is regenerated including lymphatic drainage pathways. We examined the molecular control of lymphangiogenesis within the unique model of the regenerating gecko tail. Partial sequences were obtained of the gecko lymphangiogenic growth factors, vascular endothelial growth factor C (VEGF-C) and VEGF-D along with their receptor VEGFR-3. These were highly homologous to other vertebrates. Quantitative real-time polymerase chain reaction (PCR) demonstrated up-regulation of VEGF-C, VEGF-D and VEGFR-3 mRNA expression during the early and middle stages of tail regeneration (between 4 and 9 weeks following autotomy), in late regeneration (12 weeks) and during mid-regeneration (7 and 9 weeks), respectively. VEGF-C and VEGF-D immunostaining was observed lining some lymphatic-like and blood vessels in early–mid tail regeneration, indicating possible associations of the proteins with VEGFRs on endothelia. Keratinocytes and fibroblasts also showed positive staining of VEGF-C and VEGF-D in early–mid tail regeneration. Additionally, VEGF-C was localised in adipose tissue in all tail states examined. This work suggests that specific timings exist for the expression of the lymphangiogenic growth factors, VEGF-C and VEGF-D, and their receptor, VEGF-R3, throughout the regeneration of a functional lymphatic network. Along with localisation data, this suggests potential functions for the growth factors in lymphangiogenesis and angiogenesis throughout tail regeneration.  相似文献   

5.
6.
Nearly four centuries after the discovery of lymphatic vessels, the molecular mechanisms underlying their development are beginning to be elucidated. Vascular endothelial growth factor C (VEGF-C) and VEGF-D, via signaling through VEGFR-3, appear to be essential for lymphatic vessel growth. Observations from clinicopathological studies have suggested that lymphatic vessels serve as the primary route for the metastatic spread of tumor cells to regional lymph nodes. Recent studies in animal models have provided convincing evidence that tumor lymphangiogenesis facilitates lymphatic metastasis. However, it is not clear how tumor-associated lymphangiogenesis is regulated, and little is known about how tumor cells escape from the primary tumor and gain entry into the lymphatics. This review examines some of these issues and provides a brief summary of the recent developments in this field of research.  相似文献   

7.
Molecular control of lymphangiogenesis   总被引:8,自引:0,他引:8  
The lymphatic vasculature plays a critical role in the regulation of body fluid volume and immune function. Extensive research into the molecular mechanisms that control blood vessel growth has led to identification of molecules that also regulate development and growth of the lymphatic vessels. This is generating a great deal of interest in the molecular control of the lymphatics in the context of embryogenesis, lymphatic disorders and tumor metastasis. Studies in animal models carried out over the past three years have shown that the soluble protein growth factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, and their cognate receptor tyrosine kinase, VEGF receptor-3 (VEGFR-3), are critical regulators of lymphangiogenesis. Furthermore, disfunction of VEGFR-3 has recently been shown to cause lymphedema. The capacity to induce lymphangiogenesis by manipulation of the VEGF-C/VEGF-D/VEGFR-3 signaling pathway offers new opportunities to understand the function of the lymphatic system and to develop novel treatments for lymphatic disorders.  相似文献   

8.
Impairment of lymphatic structure and function, e.g., inadequate endothelial permeability and intercellular openings, abnormal lymphangiogenesis and overexpression for immunoreactive agents, will result in tumor metastasis, autoimmune response alteration and accumulation of interstitial fluid and proteins. Recently, several novel molecules have been identified that allow a more precise distinction between lymphatic and blood vascular endothelium. The differences in expression of endothelial markers on the lymphatic vessel strongly suggest the possibility that there will be important divergence in the differentiating and regenerating responses in lymphatic behavior to various pathological processes. Undoubtfully, molecular techniques would also lead to the definition of unique markers found on lymphatic endothelial cells (LECs) in lymphatic-associated diseases which are mostly involved in lymphangiogenesis. This review is mainly concentrated on the characteristics of LECs in diabetes, wound healing, lymphedema and tumor, especially in the experimental models that have offered insight into the LEC role in these diseases affecting the lymphatic system. Increased knowledge of the molecular signaling pathways driving lymphatic development and lymphangiogenesis should boost the impact of therapeutics on the diseases. Although the field about the mechanisms that control the formation and lineage-specific differentiation and function of lymphatic vessels has experienced rapid progress in the past few years, an understanding of the basis of the differences and their implications in the pathological conditions will require much more investigation.  相似文献   

9.
肿瘤浸润转移分子机制的研究进展   总被引:5,自引:0,他引:5  
肿瘤浸润转移是多因素参与、多步骤完成的生物化学变化过程。人们已经逐渐认识到浸润转移不仅与肿瘤细胞有关,更是肿瘤细胞和肿瘤组织微环境复杂的相互作用的结果,其过程涉及多个分子作用机制和信号转导途径,包括细胞和细胞的黏附分子、细胞外基质降解、生长因子、趋化因子和淋巴血管生成因子等。本文综述了肿瘤浸润转移的分子机制。  相似文献   

10.
Molecular regulation of lymphangiogenesis and targets for tissue oedema.   总被引:3,自引:0,他引:3  
New insight has recently been obtained into the molecular mechanisms regulating the function of lymphatic endothelial cells. Vascular endothelial growth factors-C and -D have been shown to stimulate lymphangiogenesis, and their receptor VEGFR-3 has been linked to human hereditary lymphoedema, although there is evidence that other genes are also involved. These data suggest that it may become possible to stimulate lymphatic growth and function and to treat tissue oedema involved in many diseases.  相似文献   

11.
Exciting studies involving the molecular regulation of lymphangiogenesis in lymphatic-associated disorders (e.g., wound healing, lymphedema and tumor metastasis) have focused renewed attention on the intrinsic relationship between lymphatic endothelial cells (LECs) and extracellular matrix (ECM) microenvironment. ECM molecules and remodeling events play a key role in regulating lymphangiogenesis, and the "functionality"-relating molecules, especially hyaluronan, integrins, reelin, IL-7, and matrix metalloproteinases, provide the most fundamental and critical prerequisite for LEC growth, migration, tube formation, and survival, although lymphangiogenesis is directly or/and indirectly controlled by VEGF-C/-D/VEGFR- 3- Prox-1-, Syk/SLP76-, podoplanin/Ang-2/Nrp-2-, FOXC2-, and other signaling pathways in embryonic and pathological processes. New knowledge regarding the differentiation of initial lymphatics should enable improvements in understanding of a variety of cytokines, chemokines, and other factors. The lymphatic colocalization with histochemical staining by using the novel molecular markers (e.g., LYVE-1), along with subsequent injection technique with ferritin or some tracer, will reveal functional and structural features of newly formed and preexisting lymphatics. Growing recognition of the multiple functions of ECM and LEC molecules for important physiological and pathological events may be helpful in identifying the crucial changes in tissues subjected to lymph circulation and ultimately in the search for rational therapeutic approaches to prevent lymphatic-associated disorders.  相似文献   

12.
Lymphangiogenesis and its role in cancer   总被引:8,自引:0,他引:8  
In many tumour types, lymphatic vasculature serves as a major route for tumour metastasis. The dissemination of malignant cells to the regional lymph nodes is an early step in the progression of many solid tumours and is an important determinant of prognosis. Lymphangiogenesis (formation of new lymphatic vessels) is thought to be crucial for cancer cells to metastasise to the regional lymph nodes. However research in this important process has been neglected largely due to the lack of molecular markers specific to the lymphatic endothelium. Recently, several specific markers have been identified including LYVE-1, podoplanin and prox-1. Although the biology of lymphangiogeneis, particularly its regulation, is still far from clear, it is now well established that tumours are lymphangiogenic i.e. they could induce the generation of their own lymphatics and metastasise to the regional lymph nodes. It is thought that the interruption of the main signalling pathways involved in this process could help to prevent lymphatic spread of many tumours. Furthermore, understanding the molecular mechanisms in lymphangiogenesis might help to develop new therapeutic strategies against cancer lymphatic spread. Here, we reviewed the literature in regards to the biology of lymphangiogenesis, its molecular regulation, lymphatic markers and the significance in human solid tumours.  相似文献   

13.
The lymphatic vasculature is essential for the recirculation of extracellular fluid, fat absorption, and immune function and as a route of tumor metastasis. The dissection of molecular mechanisms underlying lymphangiogenesis has been accelerated by the identification of tissue-specific lymphatic endothelial markers and the study of congenital lymphedema syndromes. We report the results of genetic analyses of a kindred inheriting a unique autosomal-recessive lymphedema-choanal atresia syndrome. These studies establish linkage of the trait to chromosome 1q32-q41 and identify a loss-of-function mutation in PTPN14, which encodes a nonreceptor tyrosine phosphatase. The causal role of PTPN14 deficiency was confirmed by the generation of a murine Ptpn14 gene trap model that manifested lymphatic hyperplasia with lymphedema. Biochemical studies revealed a potential interaction between PTPN14 and the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. These results suggest a unique and conserved role for PTPN14 in the regulation of lymphatic development in mammals and a nonconserved role in choanal development in humans.  相似文献   

14.
Hepatocyte growth factor promotes lymphatic vessel formation and function   总被引:20,自引:0,他引:20  
The lymphatic vascular system plays a pivotal role in mediating tissue fluid homeostasis and cancer metastasis, but the molecular mechanisms that regulate its formation and function remain poorly characterized. A comparative analysis of the gene expression of purified lymphatic endothelial cells (LEC) versus blood vascular endothelial cells (BVEC) revealed that LEC express significantly higher levels of hepatocyte growth factor receptor (HGF-R). Whereas little or no HGF-R expression was detected by lymphatic vessels of normal tissues, HGF-R was strongly expressed by regenerating lymphatic endothelium during tissue repair and by activated lymphatic vessels in inflamed skin. Treatment of cultured LEC with HGF promoted LEC proliferation, migration and tube formation. HGF-induced proliferation of LEC did not require vascular endothelial growth factor receptor-3 activation, and HGF-induced cell migration was partially mediated via integrin alpha-9. Transgenic or subcutaneous delivery of HGF promoted lymphatic vessel formation in mice, whereas systemic blockade of HGF-R inhibited lymphatic function. These results identify HGF as a novel, potent lymphangiogenesis factor, and also indicate that HGF-R might serve as a new target for inhibiting pathological lymphangiogenesis.  相似文献   

15.
Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC) proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2) cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4) and interleukin-13 (IL-13) have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.  相似文献   

16.
The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators is involved in pathological angiogenesis at least by controlling extracellular proteolysis and by regulating endothelial cell survival and migration. Protease system''s role in lymphangiogenesis is unknown yet. Thus, based on its important pro-angiogenic effect, we hypothesized that PAI-1 may regulate lymphangiogenesis associated at least with metastatic dissemination of cancer cells. To address this issue, we studied the impact of PAI-1 deficiency in various murine models of tumoral lymphangiogenesis. Wild-type PAI-1 proficient mice were used as controls. We provide for the first time evidence that PAI-1 is dispensable for tumoral lymphangiogenesis associated with breast cancers either induced by mammary carcinoma cell injection or spontaneously appearing in transgenic mice expressing the polyomavirus middle T antigen (PymT) under the control of a mouse mammary tumor virus long-terminal repeat promoter (MMTV-LTR). We also investigated inflammation-related lymphatic vessel recruitment by using two inflammatory models. PAI-1 deficiency did neither affect the development of lymphangioma nor burn-induced corneal lymphangiogenesis. These novel data suggest that vascular remodelling associated with lymphangiogenesis and angiogenesis involve different molecular determinants. PAI-1 does not appear as a potential therapeutic target to counteract pathological lymphangiogenesis.  相似文献   

17.
Malignant melanomas of the skin primarily metastasize to lymph nodes, and the detection of sentinel lymph node metastases serves as an important prognostic parameter. There is now compelling evidence that melanomas can induce lymphangiogenesis (growth of lymphatic vessels), mainly at the tumor-stroma interface, and that the level of tumor lymphangiogenesis is correlated with the incidence of sentinel lymph node metastases and with disease-free survival. Thus, tumor lymphangiogenesis can serve as a novel prognostic predictor in melanoma. Vascular endothelial growth factor (VEGF)-C, released by melanoma cells and by tumor-associated macrophages, likely represents the major lymphangiogenic factor in melanoma, although other members of the VEGF family might also be involved. The recent discovery that tumors can induce a premetastatic niche, by inducing lymphatic vessel growth in sentinel lymph nodes even before metastasis, and that lymph node lymphangiogenesis enhances metastatic spread, indicates that activated lymphatic vessels represent novel targets for the detection and/or therapy of melanoma metastases.  相似文献   

18.
Lymphatic vessels are important for the maintenance of normal tissue fluid balance, immune surveillance and adsorption of digested fats. During the past decade, the identification of lymphatic-specific markers and growth factors has enabled detailed studies of the lymphatic system, and gain- and loss-of-function experiments have greatly increased our understanding of the mechanisms of normal lymphatic development. Understanding the basic biology has provided novel insights into the pathologic conditions of the lymphatic system that contribute to lymphedema, inflammation or lymphatic metastasis, and opened possibilities for the development of better therapeutic strategies. Here we review the current knowledge about the molecular mechanisms regulating the development of the lymphatic vasculature; of the differentiation of lymphatic endothelial cells, of the regulation of the growth of lymphatic vessels, and of remodeling of the vasculature into a network consisting of lymphatic capillaries and collecting lymphatic vessels. Furthermore, we will discuss the molecular mechanisms involved in the pathological conditions of the lymphatic vessels.  相似文献   

19.
Angiogenesis is thoroughly balanced and regulated in health; however, it is dysregulated in many diseases including cancer, age-related macular degeneration, cardiovascular diseases such as coronary and peripheral artery diseases and stroke, abnormal embryonic development, and abnormal wound healing. In addition to angiogenesis, lymphangiogenesis is pivotal for maintaining the immune system, homeostasis of body fluids and lymphoid organs; dysregulated lymphangiogenesis may cause inflammatory diseases and lymph node mediated tumor metastasis. Anti-angiogenic or anti-lymphangiogenic small peptides may play an important role as therapeutic agents normalizing angiogenesis or lymphangiogenesis in disease conditions. Several novel endogenous peptides derived from proteins containing a conserved somatotropin domain have been previously identified with the help of our bioinformatics-based methodology. These somatotropin peptides were screened for inhibition of angiogenesis and lymphangiogenesis using in vitro proliferation, migration, adhesion and tube formation assays with blood and lymphatic endothelial cells. We found that the peptides have the potential for inhibiting both angiogenesis and lymphangiogenesis. Focusing the study on the inhibition of lymphangiogenesis, we found that a peptide derived from the somatotropin conserved domain of transmembrane protein 45A human was the most potent lymphangiogenesis inhibitor, blocking lymphatic endothelial cell migration, adhesion, and tube formation.  相似文献   

20.
Metastasis is not only one of the hallmarks of cancer but, unfortunately, it also is the most accurate biomarker for poor prognosis. Cancer cells metastasize through two different but eventually merged routes, the vasculature and lymphatic systems. The processes of cancer metastasis through blood vessel have been extensively studied and are well documented in the literature. In contrast, metastasis through the lymphatic system is less studied. Most people believe that cancer cells metastasize through lymphatic vessel are passive because the lymphatic system is thought to be a sewage draining system that collects whatever appears in the tissue fluid. It was recently found that cancer cells disseminated from lymphatic vessels are protected from being destroyed by our body’s defense system. Furthermore, some cancer cells or cancer-associated immune cells secrete lymphangiogenic factors to recruit lymphatic vessel infiltration to the tumor region, a process known as lymphangiogenesis. To ensure the efficiency of lymphangiogenesis, the lymphangiogenic mediators are carried or packed by nanometer-sized particles named extracellular vesicles. Extracellular vesicles are lipid bilayer particles released from eventually every single cell, including bacterium, with diameters ranging from 30 nm (exosome) to several micrometers (apoptotic body). Components carried by extracellular vesicles include but are not limited to DNA, RNA, protein, fatty acid, and other metabolites. Recent studies suggest that cancer cells not only secrete more extracellular vesicles but also upload critical mediators required for lymphatic metastasis onto extracellular vesicles. This review will summarize recent advances in cancer lymphatic metastasis and how cancer cells regulate this process via extracellular vesicle-dependent lymphangiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号