首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Botulinum ADP-ribosyltransferase C3 modified 21-24 kDa proteins in a guanine nucleotide-dependent manner similar to that described for botulinum neurotoxin C1 and D. Whereas GTP and GTP gamma S stimulated C3-catalyzed ADP-ribosylation in the absence of Mg2+, in the presence of added Mg2+ ADP-ribosylation was impaired by GTP gamma S. C3 was about 1000-fold more potent than botulinum C1 neurotoxin in ADP-ribosylation of the 21-24 kDa protein(s) in human platelet membranes. Antibodies raised against C3 blocked ADP-ribosylation of the 21-24 kDa protein by C3 and neurotoxin C1 but neither cross reacted with neurotoxin C1 immunoblots nor neutralized the toxicity of neurotoxin C1 in mice. The data indicate that the ADP-ribosylation of low molecular mass GTP-binding proteins in various eukaryotic cells is not caused by botulinum neurotoxins but is due to the action of botulinum ADP-ribosyltransferase C3. The weak enzymatic activities described for botulinum neurotoxins appear to be due to the contamination of C1 and D preparations with ADP-ribosyltransferase C3.  相似文献   

2.
ADP-ribosylation of platelet actin by botulinum C2 toxin   总被引:10,自引:0,他引:10  
Botulinum C2 toxin is a microbial toxin which possesses ADP-ribosyltransferase activity. In human platelet cytosol a 43-kDa protein was ADP-ribosylated by botulinum C2 toxin. Labelling of the 43-kDa protein using [32P]NAD as substrate was reduced by unlabelled NAD and nicotinamide. The label was removed by treatment with snake venom phosphodiesterase. Half-maximal and maximal ADP-ribosylation occurred at 0.1 microgram/ml and 3 micrograms/ml botulinum C2 toxin, respectively. The Km value of the ADP-ribosylation reaction for NAD was about 1 microM. The peptide map of the ADP-ribosylated 43-kDa protein was almost identical with platelet actin. The ADP-ribosylated 43-kDa substrate protein bound to and was eluted from immobilized DNase I in a manner similar to G-actin. Trypsin treatment of platelet cytosol decreased subsequent ADP-ribosylation of the 43-kDa protein without occurrence of smaller labelled polypeptides. Purified platelet actin was also ADP-ribosylated by botulinum C2 toxin with similar characteristics found with actin in platelet cytosol. Phalloidin decreased the ADP-ribosylation of actin in platelet cytosol and of isolated platelet actin. Half-maximal and maximal, about 90%, reduction of actin ADP-ribosylation was observed at 0.4 microM and 10 microM phalloidin, respectively. ADP-ribosylation of purified actin, induced by botulinum C2I toxin, abolished the formation of the typical microfilament network. The data indicate that platelet G-actin but not F-actin is a substrate of botulinum C2 toxin and that this covalent modification largely affects the functional properties of actin.  相似文献   

3.
Clostridium botulinum D (strain South Africa) produces ADP-ribosyltransferase which modifies eukaryotic 24-26-kDa proteins. ADP-ribosyltransferase activity was associated with a neurotoxin of 150 kDa (Dsa toxin) as confirmed by the elution profile of Dsa toxin from high performance anion-exchange column. The 24-kDa substrate of Dsa toxin-catalyzed ADP-ribosylation was detected in several tissues examined including rat brain, heart, and liver; bovine adrenal medulla; sea urchin eggs; electric organs of electric fish; and cell lines of neural (N18, N1E115, NS20Y, NG108, PC12, and C6) and non-neural (3T3) origins, suggesting its ubiquitous localization in eukaryotic cells. On the other hand, the 26-kDa substrate was detected only in membrane fractions of neural tissues and neuronal cells, suggesting its specific localization in membrane of nerve terminals. ADP-ribosylation of both the 24-kDa substrate in PC12 membrane and the 24-26-kDa substrates in rat brain membrane was potentiated by either divalent cations or guanine nucleotides, whereas adenine nucleotides did not affect the ADP-ribosylation reaction. Trypsin digestion of the 24-kDa substrate in PC12 membrane and the 24-26-kDa substrates in rat brain membrane extract produced different tryptic fragments indicative of the structural difference between the 24- and 26-kDa substrates. Both the 24- and 26-kDa substrates were less sensitive to trypsin digestion before being ADP-ribosylated by Dsa toxin than after, suggesting the conformational alterations of the 24-26-kDa proteins induced by ADP-ribosylation. These results suggest that Dsa toxin modifies two distinct low molecular mass GTP-binding proteins by ADP-ribosylation to alter their putative function(s).  相似文献   

4.
Insulin inhibited the ability of activated pertussis toxin to catalyse the ADP-ribosylation of alpha-Gi in isolated plasma membranes in either the absence of added guanine nucleotides or in the presence of GTP. In contrast, when the non-hydrolysable GTP analogue guanylyl-5'-imido-diphosphate (p[NH]ppG) was added to ribosylation mixtures, to inhibit the action of pertussis toxin in catalysing the ADP-ribosylation of alpha-Gi, then the addition of insulin attenuated the action of p[NH]ppG causing an increase in alpha-Gi ribosylation. Pre treatment of intact hepatocytes with insulin had no effect on the subsequent ability of thiol-preactivated pertussis toxin to cause the ADP-ribosylation of alpha Gi using isolated membranes from such cells. The ability of p[NH]ppG to inhibit forskolin-stimulated adenylate cyclase activity was attenuated in the presence of insulin. Insulin did not cause the phosphorylation of alpha-Gi in either intact hepatocytes or in isolated membranes.  相似文献   

5.
Botulinum C3 ADP-ribosyltransferase modifies a approximately 24 kDa membrane protein believed to bind guanine nucleotides. Cholera toxin ADP-ribosylation factors are approximately 19 kDa GTP-binding proteins that directly activate the toxin. To evaluate a possible relationship between C3 ADP-ribosyltransferase substrate and ADP-ribosylation factor, they were partially purified from bovine brain. ADP-ribosylation factor, but not C3 ADP-ribosyltransferase substrate, stimulated auto-ADP-ribosylation of the choleragen A1 subunit whereas C3 ADP-ribosyltransferase substrate, but not ADP-ribosylation factor, was ADP-ribosylated by C3 ADP-ribosyltransferase. Thus, although both may be GTP-binding proteins, no functional similarity between ADP-ribosylation factor and C3 ADP-ribosyltransferase substrate was found.  相似文献   

6.
Interaction of small G proteins with photoexcited rhodopsin   总被引:1,自引:0,他引:1  
Bovine rod outer segment (ROS) membranes contain in addition to the heterotrimeric G protein transducin, several small GTP-binding proteins (23-27 kDa). Furthermore, these membranes contain two substrate proteins (about 22 and 24 kDa) for botulinum C3 ADP-ribosyltransferase known to ADP-ribosylate small G proteins in any mammalian cell type studied so far. Most interestingly, [32P]ADP-ribosylation of ROS membrane small G proteins by C3 is regulated by light and guanine nucleotides in a manner similar to pertussis toxin-catalyzed [32P]ADP-ribosylation of the alpha-subunit of transducin. These findings suggest that not only the heterotrimeric G protein transducin but also the C3 substrate small G proteins present in ROS membranes interact with photoexcited rhodopsin and thus contribute to its signalling action.  相似文献   

7.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

8.
N Morinaga  M Noda  I Kato 《FEBS letters》1990,271(1-2):211-214
Incubation of membranes of human promyelocytic leukemia HL-60 cells with [32P]NAD led to ADP-ribosylation of several proteins including a 38 kDa protein by endogenous ADP-ribosyltransferases. The ADP-ribosylation of the 38 kDa protein was distinctly different from others on the basis of pH dependency and heat stability at 50 degrees C, suggesting that there are at least two endogenous ADP-ribosyltransferases. It was enhanced by CTP, but not affected by ATP, GTP and UTP, whereas it was inhibited by GTP gamma S. [alpha-32P]CTP bound to the 38 kDa protein immobilized on a nitrocellulose sheet, indicating that the 38 kDa protein which bound CTP is strongly ADP-ribosylated by an endogenous ADP-ribosyltransferase.  相似文献   

9.
The 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 was purified from porcine brain cytosol by acetone precipitation, CM-Sephadex, octyl-Sepharose and TSK phenyl-5PW HPLC chromatography to apparent homogeneity. ADP-ribosylation of the protein was increased by guanine nucleotides (GTP, GDP, GTP gamma S, each 100 microM) but not by GMP, ATP or ATP gamma S. The purified 22 kDa protein bound maximally 0.9 mol [35S]GTP gamma S and hydrolyzed GTP with the rate 0.007 mol per mol protein. Amino acid sequences were obtained from two tryptic peptides, selected from an in situ digestion of Immobilon electrotransferred, gel purified ADP-ribosylated substrate. The two sequences obtained, cover 23 residues from the corresponding sequences in human rho.  相似文献   

10.
Y Odagaki  T Koyama  I Yamashita 《Life sciences》1992,50(24):1851-1857
The optimum condition to quantitate the [32P]ADP-ribosylation catalyzed by pertussis toxin (islet-activating protein, IAP) in human platelet membranes was investigated. Autoradiography indicated the incorporation of 32P into the band corresponding to the molecular weight of 40-41 kDa, which was augmented by the addition of GTP in the presence of 10 mM MgCl2. On the other hand, non-hydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) enhanced the IAP-catalyzed [32P]ADP-ribosylation only in the absence of MgCl2. The amounts of IAP-catalyzed [32P]ADP-ribosylation in the presence of 100 microM GTP and 10 mM MgCl2 were linear in proportion to the protein concentrations within the limited range of protein concentrations, indicating that this simple quantitative method could be adequately used to evaluate the IAP-sensitive G proteins. Data from fifteen healthy volunteers (7 males and 8 females ranging 24 to 60 years old) indicate that the amounts of IAP-sensitive G proteins in platelet membranes are significantly negatively correlated with ages.  相似文献   

11.
A human pathogenic strain of Bacillus cereus produces an exoenzyme which selectively ADP-ribosylates 20-25 kDa GTP-binding proteins in platelet membranes. Pre-ADP-ribosylation of rho proteins of human platelet membranes with Clostridium botulinum exoenzyme C3 or Clostridium limosum exoenzyme inhibits subsequent ADP-ribosylation by the exoenzyme from B. cereus indicating similar substrate specificity of the transferases. The ADP-ribosyltransferase from B. cereus reveals no immunological cross-reactivity with C. botulinum C3 and C. limosum exoenzyme.  相似文献   

12.
The bacterial toxins, choleragen and pertussis toxin, inhibit the light-stimulated GTPase activity of bovine retinal rod outer segments by catalysing the ADP-ribosylation of the alpha-subunit (T alpha) of transducin [Abood, Hurley, Pappone, Bourne & Stryer (1982) J. Biol. Chem. 257, 10540-10543; Van Dop, Yamanaka, Steinberg, Sekura, Manclark, Stryer & Bourne (1984) J. Biol. Chem. 259, 23-26]. Incubation of retinal rod outer segments with NAD+ and a purified NAD+:arginine ADP-ribosyltransferase from turkey erythrocytes resulted in approx. 60% inhibition of GTPase activity. Inhibition was dependent on both enzyme and NAD+, and was potentiated by the non-hydrolysable GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[beta gamma-methylene]triphosphate (p[CH2]ppG). The transferase ADP-ribosylated both the T alpha and T beta subunits of purified transducin. T alpha (39 kDa), after ADP-ribosylation, migrated as two distinct peptides with molecular masses of 42 kDa and 46 kDa on SDS/polyacrylamide-gel electrophoresis. T beta (36 kDa), after ADP-ribosylation, migrated as a 38 kDa peptide. With purified transducin subunits, it was observed that the GTPase activity of ADP-ribosylated T alpha, reconstituted with unmodified T beta gamma and photolysed rhodopsin, was decreased by 80%; conversely, reconstitution of T alpha with ADP-ribosyl-T beta gamma resulted in only a 19% inhibition of GTPase. Thus ADP-ribosylation of T alpha, the transducin subunit that contains the guanine nucleotide-binding site, has more dramatic effects on GTPase activity than does modification of the critical 'helper subunits' T beta gamma. To elucidate the mechanism of GTPase inhibition by transferase, we studied the effect of ADP-ribosylation on p[NH]pp[3H]G binding to transducin. It was shown previously that modification of transducin by choleragen, which like transferase ADP-ribosylates arginine residues, did not affect guanine nucleotide binding. ADP-ribosylation by the transferase, however, decreased p[NH]pp[3H]G binding, consistent with the hypothesis that choleragen and transferase inhibit GTPase by different mechanisms.  相似文献   

13.
The efficacy of muscarinic-receptor agonists for stimulation of inositol phosphate formation and Ca2+ mobilization in intact 1321N1 human astrocytoma cells is correlated with their capacity for formation of a GTP-sensitive high-affinity binding complex in membranes from these cells [Evans, Hepler, Masters, Brown & Harden (1985) Biochem. J. 232, 751-757]. These observations prompted the proposal that a guanine nucleotide regulatory protein serves to couple muscarinic receptors to the phospholipase C involved in phosphoinositide hydrolysis in 1321N1 cells. Inositol phosphate (InsP) formation was measured in a cell-free preparation from 1321N1 cells to provide direct support for this idea. The formation of InsP3, InsP2 and InsP1 was increased in a concentration-dependent manner (K0.5 approximately 5 microM) by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in washed membranes prepared from myo-[3H]inositol-prelabelled 1321N1 cells. Both GTP[S] and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) stimulated InsP formation by 2-3-fold over control; GTP, GDP and GMP were much less efficacious. Millimolar concentrations of NaF also stimulated the formation of inositol phosphates in membrane preparations from 1321N1 cells. In the presence of 10 microM-GTP[S], the muscarinic cholinergic-receptor agonist carbachol stimulated (K0.5 approximately 10 microM) the formation of InsP above that achieved with GTP[S] alone. The effect of carbachol was completely blocked by atropine. The order of potency of nucleotides for stimulation of InsP formation in the presence of 500 microM-carbachol was GTP[S] greater than p[NH]ppG greater than GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate Gi (the inhibitory guanine nucleotide regulatory protein), had no effect on InsP formation in the presence of GTP[S] or GTP[S] plus carbachol. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not Gi is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells.  相似文献   

14.
Liver plasma membranes prepared from genetically diabetic (db/db) mice expressed levels of Gi alpha-2, Gi alpha-3 and G-protein beta-subunits that were reduced by some 75, 63 and 73% compared with levels seen in membranes from lean animals. In contrast, there were no significant differences in the expression of the 42 and 45 kDa forms of Gs alpha-subunits. Pertussis toxin-catalysed ADP-ribosylation of membranes from lean animals identified a single 41 kDa band whose labelling was reduced by some 86% in membranes from diabetic animals. Cholera toxin-catalysed ADP-ribosylation identified two forms of Gs alpha-subunits whose labelling was about 4-fold greater in membranes from diabetic animals compared with those from lean animals. Maximal stimulations of adenylyl cyclase activity by forskolin (100 microM), GTP (100 microM), p[NH]ppG (100 microM), NaF (10 mM) and glucagon (10 microM) were similar in membranes from lean and diabetic animals, whereas stimulation by isoprenaline (100 microM) was lower by about 22%. Lower concentrations (EC50-60 nM) of p[NH]ppG were needed to activate adenylyl cyclase in membranes from diabetic animals compared to those from lean animals (EC50-158 nM). As well as causing activation, p[NH]ppG was capable of eliciting a pertussis toxin-sensitive inhibitory effect upon forskolin-stimulated adenylyl cyclase activity in membranes from both lean and diabetic animals. However, maximal inhibition of adenylyl cyclase activity in membranes from diabetic animals was reduced to around 60% of that found using membranes from lean animals. Pertussis toxin-treatment in vivo enhanced maximal stimulation of adenylyl cyclase by glucagon, isoprenaline and p[NH]ppG through a process suggested to be mediated by the abolition of functional Gi activity. The lower levels of expression of G-protein beta-subunits, in membranes from diabetic compared with lean animals, is suggested to perturb the equilibria between holomeric and dissociated G-protein subunits. We suggest that this may explain both the enhanced sensitivity of adenylyl cyclase to stimulation by p[NH]ppG in membranes from diabetic animals and the altered ability of pertussis and cholera toxins to catalyse the ADP-ribosylation of G-proteins in membranes from these two animals.  相似文献   

15.
Pretreatment of rho protein purified from pig brain cytosol with EDTA (3 mM) for 10 min at 30 degrees C inhibited its ADP-ribosylation by Clostridium botulinum C3 ADP-ribosyltransferase by more than 90%. The EDTA effect was not caused by alteration of C3. GDP or GDP beta S present during the pretreatment period completely prevented the decrease in ADP-ribosylation with half-maximal and maximal effects at 3 and 300 microM, respectively. GTP or GTP gamma S were less efficacious in preventing the decrease in ADP-ribosylation, but were more potent (half-maximal and maximal effects at 0.1 and 3 microM, respectively). [32P]ADP-ribose incorporated in pig brain rho by C3 was de-ADP-ribosylated by the enzyme in the presence of nicotinamide and at low pH. Concomitantly, [32P]NAD was formed. The pH optima for ADP-ribosylation and de-ADP-ribosylation were pH 7.5 and 5.5, respectively. De-ADP-ribosylation was most efficient with nicotinamide, less effective with 3-acetylpyridine and not observed with 3-aminopyridine, 4-aminopyridine, 4-acetylpyridine and isonicotinic acid. As observed for the ADP-ribosylation, the de-ADP-ribosylation by C3 was maximal with the GDP-bound form of rho and blocked after EDTA treatment.  相似文献   

16.
Degranulation of neutrophils involves the differential regulation of the exocytosis of at least two populations of granules. Low molecular weight GTP-binding proteins (LMW-GBPs) have been implicated in the regulation of vesicular traffic in the secretory pathways of several types of cells. In the present study we identify distinct subsets of LMW-GBPs associated with the membranes of neutrophil-specific and azurophilic granules. Ninety-four percent of total [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding activity was equally distributed between the plasma membrane and cytosol with the remaining 6% localized in the granules. In contrast, the cytosol contained only 10% of the total GTPase activity while the specific granules accounted for 13%. [alpha-32P]GTP binding to proteins transferred to nitrocellulose revealed LMW-GBPs in all fractions except the azurophilic granules. The specific granules contained three out of four bands which were found in the plasma membrane; these ranged from 20 to 23 kDa and all were resistant to alkaline extraction. Photoaffinity labeling with [alpha-32P]8-azido-GTP in the presence of micromolar Al3+ identified proteins of 25 and 26 kDa unique to azurophilic granules; these could not be labeled with [alpha-32P]8-azido-ATP and could be extracted by acidic but not alkaline pH. Botulinum C3-mediated [32P]ADP-ribosylation identified proteins of 16, 20, and 24 kDa both in plasma membranes and those of specific granules. An anti-ras monoclonal antibody, 142-24E5, recognized a 20-kDa protein localized to the plasma and specific granule membranes which could not be extracted by alkaline pH, was not a substrate for botulinum C3 ADP-ribosyltransferase, and was translocated from specific granules to plasma membrane after exposure of neutrophils to phorbol myristate acetate. We conclude that neutrophil-specific and azurophilic granules contain distinct subsets of LMW-GBPs which are uniquely situated to regulate the differential exocytosis of these two compartments.  相似文献   

17.
R P Bhullar  R J Haslam 《FEBS letters》1988,237(1-2):168-172
The 27 kDa platelet membrane protein (Gn27) that binds [alpha-32P]GTP on nitrocellulose blots of SDS-polyacrylamide gels [(1987) Biochem. J. 245, 617-620] was compared with other low molecular mass GTP-binding proteins. Platelet membranes also contained 21 kDa proteins that bound anti-ras p21 antibody and 22-23 kDa proteins that could be ADP-ribosylated by botulinum neurotoxin type D. These groups of proteins were resolved electrophoretically from each other and from Gn27. A low molecular mass GTP-binding protein from bovine brain [(1987) Biochem. J. 246, 431-439] was also resolved from Gn27. At the levels normally present in cell membranes, only Gn-proteins bound significant amounts of [32P]GTP after transfer of protein from SDS-polyacrylamide gels to nitrocellulose.  相似文献   

18.
Sea urchin sperm plasma membranes isolated from heads and flagella were used to examine the presence of Gs (stimulatory guanine nucleotide-binding regulatory protein) and small G-proteins. Flagellar plasma membranes incubated with [32P]NAD and cholera toxin (CTX) displayed radiolabeling in a protein of 48 kDa, which was reactive by immunoblotting with a specific antibody against mammalian Gs. CTX-catalyzed [32P]ADP-ribosylation in conjunction with immunoprecipitation with anti-Gs, followed by electrophoresis and autoradiography, revealed one band of 48 kDa. Head plasma membranes, in contrast, did not show substrates for ADP-ribosylation by CTX. In flagellar and head plasma membranes pertussis toxin (PTX) ADP-ribosylated the same protein described previously in membranes from whole sperm; the extent of ADP-ribosylation by PTX was higher in flagellar than in head membranes. Small G-proteins were investigated by [32P]GTP-blotting. Both head and flagellar plasma membranes showed three radiolabeled bands of 28, 25 and 24 kDa. Unlabeled GTP and GDP, but not other nucleotides, interfered with the [α-32P]GTP-binding in a concentration-dependent manner. A monoclonal antibody against human Ras p21 recognized a single protein of 21 kDa only in flagellar membranes. Thus, sea urchin sperm contain a membrane protein that shares characteristics with mammalian Gs and four small G-proteins, including Ras . Gs, Gi and Ras are enriched in flagellar membranes while the other small G-proteins do not display a preferential distribution along the sea urchin sperm plasma membrane. The role of these G-proteins in sea urchin sperm is presently under investigation.  相似文献   

19.
To test the effects of hydrostatic pressure on the coupling of receptors to guanyl nucleotide binding reglatory proteins (G proteins) in transmembrane signaling, pertussis toxin (PTX)-catalyzed [32P]ADP-ribosylation was used to probe the guanyl nucleotide-binding proteins Gi and G(o) in brain membranes from four marine teleosts. These macrourids, Coryphaenoides pectoralis, Coryphaenoides cinereus, Coryphaenoides filifer and Coryphaenoides armatus, span depths from 200 to 5400 m. Pertussis toxin specifically labelled proteins of 39-41 kDa. The PTX-catalyzed [32P]ADP-ribosylation reaction was linear for 7 h. Added guanyl nucleotides (guanosine 5'-diphosphate (GDP) and guanosine 5'-O-(3-thiotriphosphate)(GTP[S])) at concentrations up to 1000 microM did not affect ribosylation at atmospheric pressure. Under basal conditions the Gi/G(o) protein population appears to be uncoupled from receptors and bound with GDP. Pressures up to 476 atm were tested in the absence and presence of added guanyl nucleotides, 100 microM GDP and 100 microM GTP[S]. [32P]ADP-ribosylation in brain membranes from the deeper-occurring C. cinereus, C. filifer and C. armatus was not inhibited by increased pressure in the presence of 100 microM GDP. Increasing pressure decreased ribosylation in brain membranes of C. pectoralis. In the presence of 100 microM GTP[S], increased pressure inhibited ribosylation in all species. Pressure appears to enhance the efficacy of GTP[S] in dissociating the heterotrimeric holoprotein.  相似文献   

20.
Stimulated hydrolysis of the inositol phospholipids phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was investigated by studying the phosphoinositides produced in a suspended preparation of plasma membranes by transference of 32P from [gamma-32P]ATP. At basal Ca2+ concentration (calculated free Ca2+, 150 nM) phospholipid hydrolysis was stimulated either by the muscarinic agonists carbamoylcholine and bethanecol or by the addition of the non-hydrolysable analogue of GTP, guanosine 5'-[beta gamma-imido]triphosphate [p(NH)ppG]. GTP was without effect on basal hyrolysis. Both GTP and p(NH)ppG enhanced the rapid (within 10 s) hydrolysis of PtdIns4P and PtdIns(4,5)P2 induced by carbamoylcholine in a dose-dependent manner. A rightward shift in the competition curve of carbamoylcholine for bound L-[3H]quinuclidinyl benzilate was seen on addition of GTP or p(NH)ppG (100 microM) under phosphorylating conditions. Pretreatment of intact islet cells with Bordetella pertussis toxin, islet-activating protein (IAP) or treatment of membranes with IAP under conditions which elicited ADP-ribosylation of a protein of Mr 41,000 was without effect on muscarinic binding, phosphoinositide phosphorylation or subsequent hydrolysis by carbamoylcholine. The findings indicate the involvement of a GTP-binding protein in the coupling of the muscarinic receptor to phosphoinositide hydrolysis in the islet cell and suggest that this is distinct from the GTP-binding regulatory component of adenylate cyclase which is covalently modified by IAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号