首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanocytes in human skin reside both in the epidermis and in the matrix and outer root sheath of anagen hair follicles. Comparative study of melanocytes in these different locations has been difficult as hair follicle melanocytes could not be cultured. In this study we used a recently described method of growing hair follicle melanocytes to characterize and compare hair follicle and epidermal melanocytes in the scalp of the same individual. Three morphologically and antigenically distinct types of melanocytes were observed in primary culture. These included (1) moderately pigmented and polydendritic melanocytes derived from epidermis; (2) small, bipolar, amelanotic melanocytes; and (3) large, intensely pigmented melanocytes; the latter two were derived from hair follicles. The three sub-populations of cells all reacted with melanocyte-specific monoclonal antibody. Epidermal and amelanotic hair follicle melanocytes proliferated well in culture, whereas the intensely pigmented hair follicle melanocytes did not. Amelanotic hair follicle melanocytes differed from epidermal melanocytes in being less differentiated, and they expressed less mature melanosome antigens. In addition, hair follicle melanocytes expressed some antigens associated with alopecia areata, but not antigens associated with vitiligo, whereas the reverse was true for epidermal melanocytes. Thus, antigenically different populations of melanocytes are present in epidermis and hair follicle. This could account for the preferential destruction of hair follicle melanocytes in alopecia areata and of epidermal melanocytes in vitiligo.  相似文献   

2.
Expression and the role of E- and P-cadherin in the histogenesis of the surface epidermis and hair follicles were examined using the upper lip skin of the mouse. P-cadherin is expressed exclusively in the proliferating region of these tissues, that is in the germinative layer of the surface epidermis, the outer root sheath and the hair matrix. E-cadherin is coexpressed in these layers but this molecule was also detected in non-proliferating regions such as the intermediate layer of the surface epidermis and the immature regions of the inner root sheath. Neither P- nor E-cadherin was detected in fully keratinized layers such as the horny layer of the surface epidermis, the outermost layer of the outer root sheath and the mature hair fibres. These two cadherins were not detected in dermal cells. We cultured pieces of the upper lip skin in vitro in the absence or presence of a monoclonal antibody to E-cadherin (ECCD-1) or to P-cadherin (PCD-1). In control cultures, skin morphogenesis normally occurred in a pattern whereby the hair follicles grew and dermal cells were condensed to form the dermal sheath. A mixture of ECCD-1 and PCD-1, however, induced abnormal morphogenesis in the skin in several respects. (1) The cuboidal or columnar arrangement of basal epithelial cells was distorted. (2) Hair follicles were deformed. (3) Condensation of dermal cells was suppressed, causing a homogeneous distribution of these cells. These results suggest that cadherins present in epidermal cells are involved not only in maintaining the arrangement of these cells but also in inducing dermal condensation.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2593-2606
Although numerous hair proteins have been studied biochemically and many have been sequenced, relatively little is known about their in situ distribution and differential expression in the hair follicle. To study this problem, we have prepared several mouse monoclonal antibodies that recognize different classes of human hair proteins. Our AE14 antibody recognizes a group of 10-25K hair proteins which most likely corresponds to the high sulfur proteins, our AE12 and AE13 antibodies define a doublet of 44K/46K proteins which are relatively acidic and correspond to the type I low sulfur keratins, and our previously described AE3 antibody recognizes a triplet of 56K/59K/60K proteins which are relatively basic and correspond to the type II low sulfur keratins. Using these and other immunological probes, we demonstrate the following. The acidic 44K/46K and basic 56-60K hair keratins appear coordinately in upper corticle and cuticle cells. The 10-25K, AE14-reactive antigens are expressed only later in more matured corticle cells that are in the upper elongation zone, but these antigens are absent from cuticle cells. The 10-nm filaments of the inner root sheath cells fail to react with any of our monoclonal antibodies and are therefore immunologically distinguishable from the cortex and cuticle filaments. Nail plate contains 10-20% soft keratins in addition to large amounts of hair keratins; these soft keratins have been identified as the 50K/58K and 48K/56K keratin pairs. Taken together, these results suggest that the precursor cells of hair cortex and nail plate share a major pathway of epithelial differentiation, and that the acidic 44K/46K and basic 56-60K hard keratins represent a co- expressed keratin pair which can serve as a marker for hair/nail-type epithelial differentiation.  相似文献   

4.
The Notch signaling pathway has been shown to control cell-fate decisions during mouse development. To study the role of Notch1 in epidermal differentiation and the development of the various cell types within the mouse hair follicle, we generated transgenic mice that express a constitutive activated form of Notch1 under the control of the involucrin promoter. Transgenic animals express the transgene in the suprabasal epidermal keratinocytes and inner root sheath of the hair follicle, and develop both skin and hair abnormalities. Notch1 overexpression leads to an increase of the differentiated cell compartment in the epidermis, delays inner root sheath differentiation, and leads to hair shaft abnormalities and alopecia associated with the anagen phase of the hair cycle.  相似文献   

5.
The intermediate filament keratin, K15, is present in variable abundance in stratified epithelia. In this study we have isolated and characterized the sheepK15gene, focusing on its expression in the follicles of sheep and mice. We show thatK15is expressed throughout the hair cycle in the basal layer of the outer root sheath that envelops the follicle. Strikingly, however, in large medullated wool follicles, a small group of basal outer root sheath cells located in the region thought to contain hair follicle stem cells areK15-negative. In the follicle bulbK15is expressed in cells situated next to the dermal papilla but not in the inner bulb cells. Elsewhere,K15is expressed at a low, variable level in the basal layer of the epidermis and sebaceous gland, often in a punctate pattern. In the esophagus of the sheepK15expression is restricted to the basal layer, in contrast to human esophagus where it is expressed throughout the epithelium. Transgenic mouse lines established with a 15-kb sheepK15gene construct exhibited faithful expression and showed no phenotypic consequences ofK15overexpression. An investigation of transgene expression showed thatK15is continuously expressed in outer root sheath cells during the hair cycle. Given its expression in the mitotically active basal cell layers of diverse epithelia and the follicle,K15expression appears to signal an early stage in the pathway of keratinocyte differentiation that precedes the decision of a cell to become epidermal or hair-like.  相似文献   

6.
The fine structure of hairs in the most ancient extant mammals, the monotremes, is not known. The present study analyzes the ultrastructure and immunocytochemistry for keratins, trichohyalin, and transglutaminase in monotreme hairs and compares their distribution with that present in hairs of the other mammals. The overall ultrastructure of the hair and the distribution of keratins is similar to that of marsupial and placental hairs. Acidic and basic keratins mostly localize in the outer root sheath. The inner root sheath (IRS) comprises 4-8 cell layers in most hairs and forms a tile-like sheath around the hair shaft. No cytological distinction between the Henle and Huxley layers is seen as cells become cornified about at the same time. Externally to the last cornified IRS cells (homologous to the Henle layer), the companion layer contains numerous bundles of keratin. Occasionally, some granules in the companion layer show immunoreactivity for the trichohyalin antibody. This further suggests that the IRS in monotremes is ill-defined, as the companion layer of placental hairs studied so far does not express trichohyalin. A cross-reactivity with an antibody against sheep trichohyalin is present in the IRS of monotremes, suggesting conserved epitopes across mammalian trichohyalin. Trichohyalin granules in the IRS consist of a framework of immunolabeled coarse filaments of 10-12 nm. The latter assume a parallel orientation and lose the immunoreactivity in fully cornified cells. Transglutaminase immunolabeling is diffuse among trichohyalin granules and among the parallel 10-12 nm filaments of maturing inner root cells. Transglutaminase is present where its substrate, trichohyalin, is modified as matrix protein. Cornification of IRS is different from that of hair fiber cuticle and from that of the cornified layer of the epidermis above the follicle. The different consistency among cuticle, IRS, and corneous layer of the epidermis determines separation between hair fiber, IRS, and epidermis. This allows the hair to exit on the epidermal surface after shedding from the IRS and epidermis. Based on comparative studies of reptilian and mammalian skin, a speculative hypothesis on the evolution of the IRS and hairs from the skin of synapsid reptiles is presented.  相似文献   

7.
The hair follicle consists of several distinctive epidermal cell layers. The hair root, which undergoes keratinization, is surrounded by two sheaths: the inner root sheath (IRS) and the outer root sheath (ORS). The ORS is continuous with the basal layer of the epidermis. Its cells do not keratinize in situ, unlike IRS. We have previously demonstrated that keratinization of the ORS was prevented by contact with the IRS in hair follicle mid-segments (i.e. fragments dissected from skin at the level above the hair bulb and below the opening of the sebaceous gland duct) cultured on agarose layer. The purpose of this study was to determine whether the same applies to the hair bulb. After isolation, intact bulbs or hair bulb-derived cells were incubated in suspension in a low or high calcium medium. The level of mRNA for differentiation markers: involucrin, filaggrin, keratinocyte differentiation associated protein and trichohyalin, was studied by RealTime PCR. We observed increased Ca(2+) upregulated expression of involucrin, filaggrin, trichohyalin and Kdap in cultures of bulb-derived cells, but in hair bulbs downregulation of involucrin and trichohyalin was observed. We concluded that the inner root sheath exerts an inhibitory effect on the expression of involucrin and trichohyalin already in the hair bulbs. The observation that downregulation of involucrin expression under Ca(2+) influence occurs both in hair bulb and midsegments could simplify future experiments, since their separation does not seem to be necessary.  相似文献   

8.
A confocal laser microscope was used to examine the distribution pattern of actin bundles in whole-mounts of human hair follicles stained with fluorescently labeled phalloidin. Actin bundles were found exclusively in the epithelial outer root sheath of the lower and middle portions of the follicle. In the growth stage, the lower follicle was characterized by well-developed actin bundles arranged circumferentially in the innermost and outermost cell layers of the outer root sheath. Actin bundles in the innermost cells were aligned end-to-end so that they formed complete circular bands surrounding the inner root sheath. In the outermost cells, actin bundles ran underneath the basal plasma membrane to which they attached at both ends. In contrast, in the quiescent stage, actin bundles in the lower follicle were disposed radially toward the follicle surface where they terminated perpendicular to the basal plasma membrane. In the middle follicle, circumferential actin bundles were found only in the intermediate layer of the outer root sheath throughout the hair cycle. Immunofluorescent anti-myosin and anti-α-actinin staining showed a striated pattern along actin bundles. Vinculin was localized at both ends of actin bundles, corresponding to the cell-to-cell or cell-to-substrate adherens junctions. Glycerinated follicles changed in shape on the addition of MgATP, suggesting a contraction of actin bundles. From these observations, we conclude that actin bundles in the hair follicle are comparable to stress fibers and that they serve as a tensile scaffold for the growth and integrity of the follicle. Received: 6 May 1995 / Accepted: 25 October 1995  相似文献   

9.
Here we examine the expression pattern of HMGN1, a nucleosome binding protein that affects chromatin structure and activity, in the hair follicle and test whether loss of HMGN1 affects the development or cycling of the follicle. We find that at the onset of hair follicle development, HMGN1 protein is expressed in the epidermal placode and in aggregated dermal fibroblasts. In the adult hair follicle, HMGN1 is specifically expressed in the basal layer of epidermis, in the outer root sheath, in the hair bulb, but not in the inner root sheath and hair shaft. The expression pattern of HMGN1 is very similar to p63, suggesting a role for HMGN1 in the transiently amplifying cells. We also find HMGN1 expression in some, but not all hair follicle stem cells as detected by its colocalization with Nestin and with BrdU label-retaining cells. The appearance of the skin and hair follicle of Hmgn1?/? mice was indistinguishable from that of their Hmgn1+/+ littermates. We found that in the hair follicle the expression of HMGN2 is very similar to HMGN1 suggesting functional redundancy between these closely related HMGN variants.  相似文献   

10.
Epidermal and hair follicle trans glutaminases and crosslinking in skin   总被引:2,自引:0,他引:2  
Summary Epidermal and hair follicle transglutaminases crosslink structural proteins in the skin by epsilon-(gamma-glutamyl)-lysine bonds. This crosslinking produces protein polymers that are extremely insoluble and, until recently, difficult to characterize.Epidermal transglutaminase is localized to the granular layer of the epidermis. It catalyzes the crosslinking of a soluble cytoplasmic precursor to form the cornified envelope that lines the inner membrane of the mature keratinocyte in the stratum corneum.Hair follicle transglutaminase is localized to the inner root sheath and medulla of the hair follicle. It crosslinks a poorly characterized citrulline-rich protein.The enzymes and their substrates have been shown to be important markers of normal differentiation. Regulation of these processes is currently under investigation.  相似文献   

11.
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.  相似文献   

12.
The sequence of events leading to the reconstruction of a fibre-producing hair follicle, after microsurgical amputation of the lower follicle bulb, has been detailed by immunohistology and electron microscopy. The initial response was essentially found to be a wound reaction, in that hyperproliferative follicle epidermis quickly spread to below the level of amputation--associated with downward movement of mesenchymal (or dermal) sheath cells. Fibronectin was prominent in both dermis and epidermis at this stage and, as in wound repair, preceded laminin and type IV collagen in covering the lower dermal-epidermal junction. Once a new basal line of epidermis and a complete basement membrane were established, laminin and type IV collagen were detected below this junction and within the prospective papilla-forming mesenchyme. This coincided with ultrastructural observations of profuse sub-basement membrane extracellular material in the region of new papilla formation. The glassy membrane displayed extensive ultrastructural modifications at its lower level, and these corresponded with localized variations in staining intensities for all three antibodies over time. The membrane hung below the level of the epidermis, and was crossed by migrating cells from the mesenchymal dermal sheath of the follicle - it acted to segregate the inner group of follicular dermal cells from wound fibroblasts. Extracellular matrix may be a mediator of the dermal-epidermal interactions associated with this hair follicle regeneration phenomenon.  相似文献   

13.
Integrin-linked kinase (ILK) links integrins to the actin cytoskeleton and is believed to phosphorylate several target proteins. We report that a keratinocyte-restricted deletion of the ILK gene leads to epidermal defects and hair loss. ILK-deficient epidermal keratinocytes exhibited a pronounced integrin-mediated adhesion defect leading to epidermal detachment and blister formation, disruption of the epidermal-dermal basement membrane, and the translocation of proliferating, integrin-expressing keratinocytes to suprabasal epidermal cell layers. The mutant hair follicles were capable of producing hair shaft and inner root sheath cells and contained stem cells and generated proliferating progenitor cells, which were impaired in their downward migration and hence accumulated in the outer root sheath and failed to replenish the hair matrix. In vitro studies with primary ILK-deficient keratinocytes attributed the migration defect to a reduced migration velocity and an impaired stabilization of the leading-edge lamellipodia, which compromised directional and persistent migration. We conclude that ILK plays important roles for epidermis and hair follicle morphogenesis by modulating integrin-mediated adhesion, actin reorganization, and plasma membrane dynamics in keratinocytes.  相似文献   

14.
Monoclonal antibodies that recognize components of the low-sulfur keratin proteins extracted from Merino wool have been used to locate these components within the wool follicle. Immunoblotting procedures showed that all of the monoclonal antibodies bound more than one of the eight low-sulfur protein components, indicating that these proteins have antigenic determinants in common. Immunofluorescence studies showed that those antibodies specific for the component 7 family of the low-sulfur proteins bound to the developing wool fiber, whereas those antibodies recognizing the component 8 family bound to areas throughout the wool follicle, particularly the inner and outer root sheaths, but also to the fiber, the cuticle, and the epidermis. One of the monoclonal antibodies also bound to intermediate filament networks of cultured human epithelial cells.  相似文献   

15.
Summary Tritium-labeled 1,25 (OH2) vitamin D3, when injected into vitamin D-deficient adult and pregnant rats is concentrated and retained strongest in nuclei of cells in the outer root sheath of the hair, followed by the stratum granulosum, spinosum, and basale of the epidermis. In the hair follicle, in addition to the most heavily labeled outer root sheath, nuclear labeling exists also in cells of the hair bulb and of the inner root sheath, as well as in basal cells of the sebaceous gland. In contrast, cells of the dermal papilla and the connective tissue of the dermis are generally unlabeled, except for labeled cells in the outer connective tissue sheath at the infundibulum of vibrissae of 20-day fetal rats and a few scattered labeled cells in the dermis, probably macrophages. In the developing hair, in 18- and 20-day fetal rats, a distinct topographic pattern of labeled cells can be seen, which is characteristic of the different stages of hair follicle development. In the hair germ, heavily labeled cells appear first in the stratum spinosum. In the hair peg, they remain in this position in its juxtaepidermal portion; however, when a dermal papilla develops, heavily labeled cells assume a marginal position. This suggests a sequential epidermal-epidermal and mesenchymal-epidermal receptor induction. Injection of tritium labeled 25 (OH) vitamin D3 did not show nuclear concentration in these tissues and excess unlabeled 25 (OH) vitamin D3 — unlike excess 1,25 (OH2) vitamin D3 — did not prevent nuclear uptake of tritium labeled 1,25 (OH2) vitamin D3. The results indicate differential effects of 1,25 (OH2) vitamin D3 on different structures in the epidermis and dermis.Supported by US PHS grant PCM8200569  相似文献   

16.

Background  

Skin stem cells contribute to all three major lineages of epidermal appendages, i.e., the epidermis, the hair follicle, and the sebaceous gland. In hair follicles, highly proliferative committed progenitor cells, called matrix cells, are located at the base of the follicle in the hair bulb. The differentiation of these early progenitor cells leads to specification of a central hair shaft surrounded by an inner root sheath (IRS) and a companion layer. Multiple signaling molecules, including bone morphogenetic proteins (BMPs), have been implicated in this process.  相似文献   

17.
Hair differentiation and growth are controlled by complex reciprocal signaling between epithelial and mesenchymal cells. To better understand the requirement and molecular mechanism of BMP signaling in hair follicle development, we performed genetic analyses of bone morphogenetic protein receptor 1A (BMPR-IA) function during hair follicle development by using a conditional knockout approach. The conditional mutation of Bmpr1a in ventral limb ectoderm and its derivatives (epidermis and hair follicles) resulted in a lack of hair outgrowth from the affected skin regions. Mutant hair follicles exhibited abnormal morphology and lacked hair formation and pigment deposition during anagen. The timing of the hair cycle and the proliferation of hair matrix cells were also affected in the mutant follicles. We demonstrate that signaling via epithelial BMPR-IA is required for differentiation of both hair shaft and inner root sheath from hair matrix precursor cells in anagen hair follicles but is dispensable for embryonic hair follicle induction. Surprisingly, aberrant de novo hair follicle morphogenesis together with hair matrix cell hyperplasia was observed in the absence of BMPR-IA signaling within the affected skin of adult mutants. They developed hair follicle tumors from 3 months of age, indicating that inactivation of epidermal BMPR-IA signaling can lead to hair tumor formation. Taken together, our data provide genetic evidence that BMPR-IA signaling plays critical and multiple roles in controlling cell fate decisions or maintenance, proliferation, and differentiation during hair morphogenesis and growth, and implicate Bmpr1a as a tumor suppressor in skin tumorigenesis.  相似文献   

18.
Delayed wound healing in keratin 6a knockout mice   总被引:7,自引:0,他引:7       下载免费PDF全文
Keratin 6 (K6) expression in the epidermis has two components: constitutive expression in the innermost layer of the outer root sheath (ORS) of hair follicles and inducible expression in the interfollicular epidermis in response to stressful stimuli such as wounding. Mice express two K6 isoforms, MK6a and MK6b. To gain insight into the functional significance of these isoforms, we generated MK6a-deficient mice through mouse embryonic stem cell technology. Upon wounding, MK6a was induced in the outer ORS and the interfollicular epidermis including the basal cell layer of MK6a(+/+) mice, whereas MK6b induction in MK6a(-/-) mice was restricted to the suprabasal layers of the epidermis. After superficial wounding of the epidermis by tape stripping, MK6a(-/-) mice showed a delay in reepithelialization from the hair follicle. However, the healing of full-thickness skin wounds was not impaired in MK6a(-/-) animals. Migration and proliferation of MK6a(-/-) keratinocytes were not impaired in vitro. Furthermore, the migrating and the proliferating keratinocytes of full-thickness wounds in MK6a(-/-) animals expressed neither MK6a nor MK6b. These data indicate that MK6a does not play a major role in keratinocyte proliferation or migration but point to a role in the activation of follicular keratinocytes after wounding. This study represents the first report of a keratin null mutation that results in a wound healing defect.  相似文献   

19.
The expression of four different gap junction gene products (alpha 1, beta 1, beta 2, and beta 3) has been analysed during rat skin development and the hair growth cycle. Both alpha 1 (Cx43) and beta 2 (Cx26) connexins were coexpressed in the undifferentiated epidermis. A specific, developmentally regulated elimination of beta 2 expression was observed in the periderm at E16. Coinciding with the differentiation of the epidermis, differential expression of alpha 1 and beta 2 connexins was observed in the newly formed epidermal layers. alpha 1 connexin was expressed in the basal and spinous layers, while beta 2 was confined to the differentiated spinous and granular layers. Large gap junctions were present in the basal layer, while small gap junctions, associated with many desmosomes, were typical for the differentiated layers. Although the distribution pattern for alpha 1 and beta 2 expression remained the same in the neonatal and postnatal epidermis, the RNA and protein levels decreased markedly following birth. Hair follicle development was marked by expression of alpha 1 connexin in hair germs at E16. Following beta 2 detection at E20, the expression increased for both alpha 1 and beta 2 in developing follicles. A cell-type-specific expression was detected in the outer root sheath, in the matrix, in the matrix-derived cells (inner root sheath, cortex and medulla) and in the dermal papilla. In addition, alpha 1 was specifically expressed in the arrector pili muscle, while sebocytes expressed both alpha 1 and beta 3 (Cx31) connexin. beta 1 connexin (Cx32) was not detected at any stage analysed. The results indicate that multiple gap junction genes contribute to epidermal and follicular morphogenesis. Moreover, based on the utilization of gap junctions in all living cells of the surface epidermis, it appears that the epidermis may behave as a large communication compartment that may be coupled functionally to epidermal appendages (hair follicles and sebaceous glands) via gap junctional pathways.  相似文献   

20.
Epidermal and hair follicle transglutaminases (1,4-alpha-D-glucan: orthophosphate alpha-D-glucosyltransferase EC 2.4.1.1) were differentially isolated and subsequently purified from newborn or 4-5-day-old rats. Both enzymes migrated identically on ion-exchange chromatography but were widely separated by block electrophoresis, with the epidermal enzyme migrating further toward the anode. Each enzyme was finally purified by gel filtration. Epidermal transglutaminase had an apparent molecular weight of 56 000-58 000 in this medium and in gels containing sodium dodecyl sulfate (SDS), while hair follicle transglutaminase had a molecular weight of 52 000-54 000 and was reduced to two apparently identical subunits of a molecular weight of 27 000 by denaturing media. Antiserum specific to each transglutaminase was produced in chickens; when conjugated to fluorescein these antisera localized the enzymes to the granular layer of epidermis and the inner root sheath of follicles, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号