首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present, there is no doubt that RNA recombination is one of the major factors responsible for the generation of new RNA viruses and retroviruses. Numerous experimental systems have been created to investigate this complex phenomenon. Consequently, specific RNA structural motifs mediating recombination have been identified in several viruses. Unfortunately, up till now a unified model of genetic RNA recombination has not been formulated, mainly due to difficulties with the direct comparison of data obtained for different RNA-based viruses. To solve this problem, we have attempted to construct a universal system in which the recombination activity of various RNA sequences could be tested. To this end, we have used brome mosaic virus, a model (+)RNA virus of plants, for which the structural requirements of RNA recombination are well defined. The effectiveness of the new homomolecular system has been proven in an experiment involving two RNA sequences derived from the hepatitis C virus genome. In addition, comparison of the data obtained with the homomolecular system with those generated earlier using the heteromolecular one has provided new evidence that the mechanisms of homologous and non-homologous recombination are different and depend on the virus' mode of replication.  相似文献   

2.
3.
Houston P  Simon PJ  Broach JR 《Genetics》2004,166(3):1187-1197
Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromosome III that activates the surrounding region, including HML, for recombination in a cells, an activity suppressed by alpha 2 protein in alpha cells. We have examined the ability of RE to stimulate different forms of interchromosomal recombination. We found that RE exerted an effect on interchromosomal mating-type switching and on intrachromosomal homologous recombination but not on interchromosomal homologous recombination. Also, even in the absence of RE, MAT alpha still influenced donor preference in interchromosomal mating-type switching, supporting a role of alpha 2 in donor preference independent of RE. These results suggest a model in which RE affects competition between productive and nonproductive recombination outcomes. In interchromosome gene conversion, RE enhances both productive and nonproductive pathways, whereas in intrachromosomal gene conversion and mating-type switching, RE enhances only the productive pathway.  相似文献   

4.
5.
In this paper we analysed the genome stability of various Arabidopsis thaliana plant organs using a transgenic recombination system. The system was based on two copies of non-functional GUS (lines #651 and #11) or LUC (line #15D8) reporter genes serving as a recombination substrate. Both reporter assays showed that recombination in flowers or stems were rare events. Most of the recombination sectors were found in leaves and roots, with leaves having over 2-fold greater number of the recombination events per single cell genome as compared to roots. The recombination events per single genome were 9.7-fold more frequent on the lateral half of the leaves than on the medial halves. This correlated with a 2.5-fold higher metabolic activity in the energy source (lateral) versus energy sink (medial) of leaves. Higher metabolic activity was paralleled by a higher anthocyanin production in lateral halves. The level of double strand break (DSB) occurrence was also different among plant organs; the highest level was observed in roots and the lowest in leaves. High level of DSBs strongly positively correlated with the activity of the key repair enzymes, AtKU70 and AtRAD51. The ratio of AtRAD51 to AtKU70 expression was the highest in leaves, supporting the more active involvement of homologous recombination pathway in the repair of DSBs in this organ. Western blot analysis confirmed the real time PCR expression data for AtKU70 gene.  相似文献   

6.
J B Virgin  J P Bailey 《Genetics》1998,149(3):1191-1204
Homologous recombination is increased during meiosis between DNA sequences at the same chromosomal position (allelic recombination) and at different chromosomal positions (ectopic recombination). Recombination hotspots are important elements in controlling meiotic allelic recombination. We have used artificially dispersed copies of the ade6 gene in Schizosaccharomyces pombe to study hotspot activity in meiotic ectopic recombination. Ectopic recombination was reduced 10-1000-fold relative to allelic recombination, and was similar to the low frequency of ectopic recombination between naturally repeated sequences in S. pombe. The M26 hotspot was active in ectopic recombination in some, but not all, integration sites, with the same pattern of activity and inactivity in ectopic and allelic recombination. Crossing over in ectopic recombination, resulting in chromosomal rearrangements, was associated with 35-60% of recombination events and was stimulated 12-fold by M26. These results suggest overlap in the mechanisms of ectopic and allelic recombination and indicate that hotspots can stimulate chromosomal rearrangements.  相似文献   

7.
We introduce a method for identifying elements of a protein structure that can be shuffled to make chimeric proteins from two or more homologous parents. Formulating recombination as a graph‐partitioning problem allows us to identify noncontiguous segments of the sequence that should be inherited together in the progeny proteins. We demonstrate this noncontiguous recombination approach by constructing a chimera of β‐glucosidases from two different kingdoms of life. Although the protein's alpha–beta barrel fold has no obvious subdomains for recombination, noncontiguous SCHEMA recombination generated a functional chimera that takes approximately half its structure from each parent. The X‐ray crystal structure shows that the structural blocks that make up the chimera maintain the backbone conformations found in their respective parental structures. Although the chimera has lower β‐glucosidase activity than the parent enzymes, the activity was easily recovered by directed evolution. This simple method, which does not rely on detailed atomic models, can be used to design chimeras that take structural, and functional, elements from distantly‐related proteins.  相似文献   

8.
A series of different frameshift mutations of a firefly luciferase reporter plasmid was created so that no activity was obtained when they were transfected into mammalian cells. Co-transfection of these constructs with short fragments of the original sequence resulted in luciferase activity in different cell lines (A-549, NIH 3T3 and Jurkat). The level of this activity was dependent on the length of the fragment, regardless of cell line examined. Two different transfection techniques (lipofection and adenovirus-enhanced gene transfer) gave similar results. It was shown by polymerase chain reaction that expression of detectable luciferase required recombination of the transfected molecules. Cells with defined defects in DNA repair pathways were examined for their ability to perform this extrachromosomal recombination. Cells lacking normal Ku p80, (ADP-ribosyl)transferase, MLH1 or XP-C were all capable of restoring expression to the frameshifted constructs. Given the pivotal roles of the above molecules in the pathways of DNA repair, it seems that this recombination derives from a different activity.  相似文献   

9.
In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases) called hotspots, separated by large intervening regions with no or very little recombination. Despite the importance of regulating both the frequency and the distribution of recombination events, the genetic factors controlling the activity of the recombination hotspots in mammals are still poorly understood. We previously characterized a recombination hotspot located close to the Psmb9 gene in the mouse major histocompatibility complex by sperm typing, demonstrating that it is a site of recombination initiation. With the goal of uncovering some of the genetic factors controlling the activity of this initiation site, we analyzed this hotspot in both male and female germ lines and compared the level of recombination in different hybrid mice. We show that a haplotype-specific element acts at distance and in trans to activate about 2,000-fold the recombination activity at Psmb9. Another haplotype-specific element acts in cis to repress initiation of recombination, and we propose this control to be due to polymorphisms located within the initiation zone. In addition, we describe subtle variations in the frequency and distribution of recombination events related to strain and sex differences. These findings show that most regulations observed act at the level of initiation and provide the first analysis of the control of the activity of a meiotic recombination hotspot in the mouse genome that reveals the interactions of elements located both in and outside the hotspot.  相似文献   

10.
RecBCD has two conflicting roles in Escherichia coli. (i) As ExoV, it is a potent double-stranded (ds)DNA exonuclease that destroys linear DNA produced by restriction of foreign DNA. (ii) As a recombinase, it promotes repair of dsDNA breaks and genetic recombination in the vicinity of chi recombination hot-spots. These paradoxical roles are accommodated by chi-dependent attenuation of RecBCD exonuclease activity and concomitant conversion of the enzyme to a recombinase. To challenge the proposal that chi converts RecBCD from a destructive exonuclease to a recombinogenic helicase, we mutated the nuclease catalytic centre of RecB and tested the resulting mutants for genetic recombination and DNA repair in vivo. We predicted that, if nuclease activity inhibits recombination and helicase activity is sufficient for recombination, the mutants would be constitutive recombinases, as has been seen in recD null mutants. Conversely, if nuclease activity is required, the mutants would be recombination deficient. Our results indicate that 5' --> 3' exonuclease activity is essential for recombination by RecBCD at chi recombination hot-spots and at dsDNA ends in recD mutants. In the absence of RecB-dependent nuclease function, recombination becomes entirely dependent on the 5' --> 3' single-stranded (ss)DNA exonuclease activity of RecJ and the helicase activity of RecBC(D).  相似文献   

11.
We describe a convenient PCR-based protocol for in vitro recombination of homologous genes, thereby minimizing the rate of associated point mutations. High-fidelity recombination conditions were obtained using Vent DNA polymerase, which, in contrast to Taq DNA polymerase, shows significant proofreading activity and ranges among the slowest thermostable DNA polymerases, allowing tight control of the polymerase-catalyzed DNA extension. To determine the mutagenesis rate and to analyze the efficiency of recombination, 89 clones from a standard experiment were randomly selected for further analysis. Sequence comparison revealed that 21% (19/89) of the clones result from different recombination events in the marker-containing region (260 bp). The overall mutation rate is only 0.02%, which is the lowest rate thus far reported for in vitro recombination experiments.  相似文献   

12.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative (ALT) recombination mechanism. In yeast, Sgs1p and its associated type IA topoisomerase, Top3p, may work coordinately in removing Holliday junction intermediates from a crossover-producing recombination pathway. Previous studies have also indicated that Sgs1 helicase acts in a telomere recombination pathway. Here we show that topoisomerase III is involved in telomere-telomere recombination. The recovery of telomere recombination-dependent survivors in a telomerase-minus yeast strain was dependent on Top3p catalytic activity. Moreover, the RIF1 and RIF2 genes are required for the establishment of TOP3/SGS1-dependent telomere-telomere recombination. In human Saos-2 ALT cells, human topoisomerase IIIalpha (hTOP3alpha) also contributes to telomere recombination. Strikingly, the telomerase activity is clearly enhanced in surviving si-hTOP3alpha Saos-2 ALT cells. Altogether, the present results suggest a potential role for hTOP3alpha in dissociating telomeric structures in telomerase-deficient cells, providing therapeutic implications in human tumors.  相似文献   

13.
Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses a functional Gag. We demonstrate that this Gag reconstitution assay can be used to detect recombination between two group M HIV-1 variants of the same or of different subtypes. Using both gfp and gag assays, we found that, similar to group M viruses, group O viruses also recombine frequently. When recombination between a group M virus and a group O virus was examined, we found three distinct barriers for intergroup recombination. First, similar to recombination within group M viruses, intergroup recombination is affected by the identity of the dimerization initiation signal (DIS); variants with the same DIS recombined at a higher rate than those with different DIS. Second, using the gfp recombination assay, we showed that intergroup recombination occurs much less frequently than intragroup recombination, even though the gfp target sequence is identical in all viruses. Finally, Gag reconstitution between variants from different groups is further reduced compared with green fluorescent protein, indicating that sequence divergence interferes with recombination efficiency in the gag gene. Compared with identical sequences, we estimate that recombination rates are reduced by 3-fold and by 10- to 13-fold when the target regions in gag contain 91% and 72-73% sequence identities, respectively. These results show that there are at least three distinct mechanisms preventing exchange of genetic information between divergent HIV-1 variants from different groups.  相似文献   

14.
Genomic homologous recombination in planta.   总被引:8,自引:1,他引:7       下载免费PDF全文
S Gal  B Pisan  T Hohn  N Grimsley    B Hohn 《The EMBO journal》1991,10(6):1571-1578
A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process.  相似文献   

15.
In this study, our phenotype of interest is meiotic recombination. Using genotypes of approximately 6,000 SNP markers in members of the Centre d'Etude du Polymorphisme Humain Utah pedigrees, we found extensive individual variation in the number of female and male recombination events. The locations and frequencies of these recombination events vary along the genome. In both female and male meiosis, the regions with the most recombination events are found at the ends of the chromosomes. Our analysis also shows that there are polymorphic differences among individuals in the activity of the recombination "jungles"; these preferred sites of meiotic recombination differ greatly among individuals. These findings have important implications for understanding genetic disorders that result from improper chromosome segregation.  相似文献   

16.
Recombination has essential functions in mammalian meiosis, which impose several constraints on the recombination process. However, recent studies have shown that, in spite of these roles, recombination rates vary tremendously among humans, and show marked differences between humans and closely related species. These findings provide important insights into the determinants of recombination rates and raise new questions about the selective pressures that affect recombination over different genomic scales, with implications for human genetics and evolutionary biology.  相似文献   

17.
Transformation of different Escherichia coli strains by linear dimers of pBR322 containing different tet alleles was investigated. Linear dimers transformed wild-type strains 0.1 to 1% as efficiently as circular dimers. In contrast, linear dimers transformed recBrecCsbcA strains, where the RecE recombination system is functional, as efficiently as circular dimers. The transformants contained plasmids that had a single recombinant monomer genotype, indicating that transformation was mediated by a recombination-dependent cyclization reaction. Altering the position of the double-strand break changed the frequency of recovering different recombination products, but had no effect on the frequency of transformation. Both the frequency of transformation and the production of Tcr recombinants were decreased by recE mutations, while recA and recF mutations were slightly stimulatory (twofold). Several recombination models consistent with these results are presented.  相似文献   

18.
Intermolecular recombination events were monitored in Arabidopsis thaliana lines using specially designed recombination traps consisting of tandem disrupted beta-glucuronidase or luciferase reporter genes in direct repeat orientation. Recombination frequencies (RFs) varied between the different lines, indicating possible position effects influencing intermolecular recombination processes. The RFs between sister chromatids and between homologous chromosomes were measured in plants either hemizygous or homozygous for a transgene locus. The RFs in homozygous plants exceeded those of hemizygous plants by a factor of >2, implying that in somatic plant cells both sister chromatid recombination and recombination between homologous chromosomes exist for recombinational DNA repair. In addition, different DNA-damaging agents stimulated recombination in homozygous and hemizygous plants to different extents in a manner dependent on the type of DNA damage and on the genomic region. The genetic and molecular analysis of recombination events showed that most of the somatic recombination events result from gene conversion, although a pop-out event has also been characterized.  相似文献   

19.
Homologous recombination in plants was studied using an extrachromosomal recombination assay in which intermolecular homologous recombination between two complementary plasmids restored a selectable marker gene. Several vectors containing an insertion into or deletions within the coding region of the neomycin phosphotransferase (NPT-II) gene were designed. Plasmids were introduced, in pairwise combinations, into protoplasts and homologous recombination events were measured by counting the number of NPT-ll-resistant colonies. A 10-fold increase in recombination frequency was observed in Petunia hybrids RL01 compared to Nicotiana tabacum SRI. This difference occurred when one or both of the co-transferred recombination plasmids was offered in a circular form. Apart from such specific differences between two cultivars from different species, a two-to fivefold increase in recombination frequencies was observed when the genomic TBS (transformation booster sequence) fragment from P. hybrids was added onto one of the transferred plasmids. TBS-specific stimulation of recombination was observed in Petunia RL01. These data suggest that two different recombination pathways may be present in plants.  相似文献   

20.
Two separate assays, one that requires stable integration of recombination products and one that does not, were employed to elucidate the role of single-stranded DNA in extrachromosomal homologous recombination in Nicotiana tabacum. Both assays revealed that single-stranded DNA in linear and in circular forms was an efficient substrate for recombination, provided that the cotransformed recombination substrates were of complementary sequence, so that direct annealing was possible. Recombination was inefficient when both single-stranded recombination partners contained homologous regions of identical sequence and generation of a double-stranded DNA was required prior to heteroduplex formation. These results indicate that direct annealing of single strands is an important initial step for intermolecular recombination in tobacco cells. Annealed cotransformed single-stranded molecules yielded intermediates that could be further processed by either continuous or discontinuous second-strand synthesis. The type of intermediate had no influence on the recombination efficiency. Double-stranded circles were unable to recombine efficiently either with each other or with single-stranded DNA. Our results suggest that a helicase activity is involved in the initial steps of double-stranded DNA recombination which unwinds duplex molecules at the site of double-strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号