首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Id proteins play an important role in proliferation, differentiation, and tumor development. We report here that Id gene expression can be regulated by the insulin-like growth factor I receptor (IGF-IR), a receptor that also participates in the regulation of cellular proliferation and differentiation. Specifically, we found that the IGF-IR activated by its ligand was a strong inducer of Id2 gene expression in 32D murine hemopoietic cells. This activation was not simply the result of cellular proliferation, as Id2 gene expression was higher in 32D cells stimulated by IGF-I than in cells exponentially growing in interleukin-3. The up-regulation of Id2 gene expression was largely dependent on the presence of insulin receptor substrate-1, a major substrate of the IGF-IR and a potent activator of the phosphatidylinositol 3-kinase (PI3K) pathway. The role of PI3K activity in the up-regulation of Id2 gene expression by the IGF-IR was confirmed by different methods and in different cell types. In 32D cells, the up-regulation of Id2 gene expression by the PI3K pathway correlated with interleukin-3 independence and inhibition of differentiation.  相似文献   

2.
3.
Pescadillo (PES1) and the upstream binding factor (UBF1) play a role in ribosome biogenesis, which regulates cell size, an important component of cell proliferation. We have investigated the effects of PES1 and UBF1 on the growth and differentiation of cell lines derived from 32D cells, an interleukin-3 (IL-3)-dependent murine myeloid cell line. Parental 32D cells and 32D IGF-IR cells (expressing increased levels of the type 1 insulin-like growth factor I [IGF-I] receptor [IGF-IR]) do not express insulin receptor substrate 1 (IRS-1) or IRS-2. 32D IGF-IR cells differentiate when the cells are shifted from IL-3 to IGF-I. Ectopic expression of IRS-1 inhibits differentiation and transforms 32D IGF-IR cells into a tumor-forming cell line. We found that PES1 and UBF1 increased cell size and/or altered the cell cycle distribution of 32D-derived cells but failed to make them IL-3 independent. PES1 and UBF1 also failed to inhibit the differentiation program initiated by the activation of the IGF-IR, which is blocked by IRS-1. 32D IGF-IR cells expressing PES1 or UBF1 differentiate into granulocytes like their parental cells. In contrast, PES1 and UBF1 can transform mouse embryo fibroblasts that have high levels of endogenous IRS-1 and are not prone to differentiation. Our results provide a model for one of the theories of myeloid leukemia, in which both a stimulus of proliferation and a block of differentiation are required for leukemia development.  相似文献   

4.
We demonstrated that molecular clones of the v-myb oncogene of avian myeloblastosis virus (AMV) can direct the synthesis of p48v-myb both in avian and mammalian cells which are not targets for transformation by AMV. To accomplish this, we constructed dominantly selectable avian leukosis virus derivatives which efficiently coexpress the protein products of the Tn5 neo gene and the v-myb oncogene. The use of chemically transformed QT6 quail cells for proviral DNA transfection or retroviral infection, followed by G418 selection, allowed the generation of cell lines which continuously produce both undeleted infectious neo-myb viral stocks and p48v-myb. The presence of a simian virus 40 origin of replication in the proviral plasmids also permitted high-level transient expression of p48v-myb in simian COS cells without intervening cycles of potentially mutagenic retroviral replication. These experiments establish that the previously reported DNA sequence of v-myb does in fact encode p48v-myb, the transforming protein of AMV.  相似文献   

5.
32D cells are murine myeloid cells that grow indefinitely in Interleukin-3 (IL-3). In these cells, the type 1 insulin-like growth factor (IGF-I) and granulocytic-colony stimulating factor (G-CSF) induce differentiation to granulocytes. 32D cells do not express insulin receptor substrate-1 (IRS-1) or IRS-2, docking proteins of the IGF-I receptor. Ectopic expression of IRS-1 in these cells inhibits differentiation, the cells become IL-3 independent and IGF-1 dependent and can form tumors in mice. 32D and 32D-derived cells offer a good model in which to study the expression profiles of Micro Rna (miR) related to sustained proliferation or differentiation. We present here the data obtained with miR micro-arrays and identify the miR that are regulated by IGF-1 or G-CSF and are associated with either differentiation or indefinite cell proliferation of 32D murine myeloid cells.  相似文献   

6.
In order to define the domains of the v-myb protein that are important for transactivation of gene expression, we have studied transactivation by the v-myb gene and a set of v-myb deletion mutants using transient transfection assays in NIH 3T3 cells. Analysis of the set of v-myb deletion products demonstrated that a previously unidentified region in the carboxyl-terminal portion of the protein is required for transactivation. This region lies between amino acids 295-356 with respect to the 5' end of the v-myb gene. Switching the v-myb DNA binding domain with the DNA binding domain of the rat glucocorticoid receptor (rGR) switched the cis-element requirement for v-myb action: only reports containing glucocorticoid response elements were activated by myb-rGR fusion proteins. The carboxyl terminal region essential for transactivation by the intact v-myb gene was also necessary for transactivation by the rGR-fusion gene. Carboxyl-terminal deletion mutations that encompassed the novel transactivation region were able to block wild-type v-myb transactivation when tested in transient co-expression assays. In an unexpected sidelight to our studies, we could demonstrate that the lacZ gene present in the prokaryotic vector sequences contained a DNA element that fortuitously can act as a v-myb-dependent enhancer element, and that v-myb protein can bind to this element in vitro. The lacZ enhancer contains the myb consensus DNA binding site YAAC(G/T)G.  相似文献   

7.
8.
J S Lipsick 《Journal of virology》1987,61(10):3284-3287
The v-myb oncogene of avian myeloblastosis virus transforms myeloid cells exclusively, both in vivo and in vitro. The c-myb proto-oncogene from which v-myb arose is expressed at relatively high levels in immature hematopoietic cells of the lymphoid, erythroid, and myeloid lineages but not in myeloblasts transformed by v-myb. This finding suggested that the nuclear v-myb gene product p48v-myb might act directly to inhibit the normal expression of the c-myb gene. I have therefore used a selectable avian retroviral vector to express p48v-myb in avian erythroblasts which normally express high levels of the c-myb gene product p75c-myb. The results demonstrate that p48v-myb and p75c-myb can be coexpressed in the nuclei of cloned cells. Therefore, p48v-myb does not invariably prevent the expression of p75c-myb.  相似文献   

9.
O Burk  K H Klempnauer 《The EMBO journal》1991,10(12):3713-3719
The oncogene v-myb and its cellular progenitor c-myb encode nuclear, DNA binding phosphoproteins that are thought to regulate the expression of myb-responsive genes during myeloid differentiation. To identify such myb-regulated genes, and to explore the mechanisms by which v-myb affects their expression, we have established a conditional expression system for v-myb. We have converted the v-myb protein to an estrogen-inducible transactivator by fusing the protein to the hormone binding domain of the human estrogen receptor. Expression of the chimeric protein in a chicken macrophage cell-line causes estrogen-dependent, reversible changes in the differentiation state as well as alterations in the gene expression program of the cells. We have used this estrogen-dependent v-myb expression system to identify a novel v-myb regulated gene.  相似文献   

10.
Human Xeroderma pigmentosum "normal" fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental "normal" AS16 cells and a revertant clone (ASKXA Cl 1.1 G). Our results lead to the conclusion that the XP fibroblasts are phenotypically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.  相似文献   

11.
The multifunctional calcium/calmodulin-dependent protein kinase II, CaMKII, has been shown to regulate chloride movement and cellular function in both excitable and non-excitable cells. We show that the plasma membrane expression of a member of the ClC family of Cl(-) channels, human CLC-3 (hCLC-3), a 90-kDa protein, is regulated by CaMKII. We cloned the full-length hCLC-3 gene from the human colonic tumor cell line T84, previously shown to express a CaMKII-activated Cl(-) conductance (I(Cl,CaMKII)), and transfected this gene into the mammalian epithelial cell line tsA, which lacks endogenous expression of I(Cl,CaMKII). Biotinylation experiments demonstrated plasma membrane expression of hCLC-3 in the stably transfected cells. In whole cell patch clamp experiments, autonomously active CaMKII was introduced into tsA cells stably transfected with hCLC-3 via the patch pipette. Cells transfected with the hCLC-3 gene showed a 22-fold increase in current density over cells expressing the vector alone. Kinase-dependent current expression was abolished in the presence of the autocamtide-2-related inhibitory peptide, a specific inhibitor of CaMKII. A mutation of glycine 280 to glutamic acid in the conserved motif in the putative pore region of the channel changed anion selectivity from I(-) > Cl(-) to Cl(-) > I(-). These results indicate that hCLC-3 encodes a Cl(-) channel that is regulated by CaMKII-dependent phosphorylation.  相似文献   

12.
Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.  相似文献   

13.
Endogenous expression of the interleukin-3 (IL3) gene introduced with a retrovirus vector renders hematopoietic cells autonomous of exogenous growth factor. To investigate the mechanism of autocrine stimulation, 25 clones were isolated after retrovirus transduction of IL3 into 32D-cl23 or FDC-P1 cells. Medium conditioned by these autonomous IL3-producing clones supported the growth of factor-dependent 32D cells. Although there was a severalfold variation in the amount of IL3 secreted (some clones secreted barely detectable levels), the doubling time of each clone in the absence of added IL3 was identical to that of the parental cell line maximally stimulated by exogenous IL3. Concentrated monoclonal and polyclonal antibodies, both highly effective in neutralizing exogenous IL3, were assayed for ability to inhibit autocrine growth. Minimal inhibitory effects were observed only on washed autocrine clones secreting low levels of IL3. To test the activity of cytoplasmically synthesized IL3, the nucleotides encoding the signal sequence of IL3 were deleted and replaced with an in-frame ATG in the context of a consensus translation initiation sequence. Ten 32D clones expressing this restructured IL3 genome were obtained. Despite the presence of biologically active IL3 in cell lysates, all clones remained dependent on exogenous IL3, with the same dose-response as that found for 32D cells. Our data are most compatible with a mechanism whereby endogenously produced IL3 interacts with its receptor prior to surface display.  相似文献   

14.
Expression of the proto-oncogene p93c-fes and its associated tyrosine kinase activity is marked in mature granulocytes, monocytes, differentiated HL-60 leukemia cells, and leukemia cell lines KG-1, THP-1, HEL, and U-937, which can be induced to differentiate along the granulocyte/monocyte pathway. Conversely, p93-c-fes expression is absent in the K562 cell line, which is resistant to myeloid differentiation. Upon transfection and clonal selection of K562 cells using a mammalian expression vector containing the 13-kilobase pair c-fes gene, c-fes mRNA was transcribed and p93-c-fes tyrosine activity kinase was expressed. Clones expressing c-fes underwent myeloid differentiation as assessed by the appearance of phagocytic activity, Fc receptors, nitro blue tetrazolium reduction, Mac-1 immunofluorescence, and lysozyme production. These results indicate that the expression of the c-fes protooncogene and its associated tyrosine kinase activity plays a major role in the initiation of myeloid differentiation.  相似文献   

15.
After an initial burst of cell proliferation, the type 1 insulin-like growth factor receptor (IGF-IR) induces granulocytic differentiation of 32D IGF-IR cells, an interleukin-3-dependent murine hemopoietic cell line devoid of insulin receptor substrate-1 (IRS-1). The combined expression of the IGF-IR and IRS-1 (32D IGF-IR/IRS-1 cells) inhibits IGF-I-mediated differentiation, and causes malignant transformation of 32D cells. Because of the role of IRS-1 in changing the fate of 32D IGF-IR cells from differentiation (and subsequent cell death) to malignant transformation, we have looked for differences in IGF-IR signaling between 32D IGF-IR and 32D IGF-IR/IRS-1 cells. In this report, we have focused on p70(S6K), which is activated by the IRS-1 pathway. We find that the ectopic expression of IRS-1 and the inhibition of differentiation correlated with a sustained activation of p70(S6K) and an increase in cell size. Phosphorylation in vivo of threonine 389 and, to a lesser extent, of threonine 421/serine 424 of p70(S6K) seemed to be a requirement for inhibition of differentiation. A role of IRS-1 and p70(S6K) in the alternative between transformation or differentiation of 32D IGF-IR cells was confirmed by findings that inhibition of p70(S6K) activation or IRS-1 signaling, by rapamycin or okadaic acid, induced differentiation of 32D IGF-IR/IRS-1 cells. We have also found that the expression of myeloperoxidase mRNA (a marker of differentiation, which sharply increases in 32D IGF-IR cells), does not increase in 32D IGF-IR/IRS-1 cells, suggesting that the expression of IRS-1 in 32D IGF-IR cells causes the extinction of the differentiation program initiated by the IGF-IR, while leaving intact its proliferation program.  相似文献   

16.
The Notch transmembrane receptors play important roles in precursor survival and cell fate specification during hematopoiesis. To investigate the function of Notch and the signaling events activated by Notch in myeloid development, we expressed truncated forms of Notch1 or Notch2 proteins that either can or cannot activate the core binding factor 1 (CBF1) in 32D (clone 3) myeloblasts. 32D cells proliferate as blasts in the presence of the cytokines, GM-CSF or IL-3, but they initiate differentiation and undergo granulopoiesis in the presence of granulocyte CSF (G-CSF). 32D cells expressing constitutively active forms of Notch1 or Notch2 proteins that signal through the CBF1 pathway maintained significantly higher numbers of viable cells and exhibited less cell death during G-CSF induction compared with controls. They also displayed enhanced entry into granulopoiesis, and inhibited postmitotic terminal differentiation. In contrast, Notch1 constructs that either lacked sequences necessary for CBF1 binding or that failed to localize to the nucleus had little effect. Elevated numbers of viable cells during G-CSF treatment were also observed in 32D cells overexpressing the basic helix-loop-helix protein (bHLH), HES1, consistent with activation of the CBF1 pathway. Taken together, our data suggest that Notch signaling enhances 32D cell survival, promotes entry into granulopoiesis, and inhibits postmitotic differentiation through a CBF1-dependent pathway.  相似文献   

17.
Various kinds of hormones including insulin, triiodothyronine (T(3)) and fat-soluble vitamins have been proposed as mediators of adipocyte differentiation in mammals. To investigate the factors which are responsible for fish adipocyte differentiation, we developed a serum-free culture system of stromal-vascular cells of red sea bream adipose tissue and examined the effects of bovine insulin, T(3), and fat-soluble vitamins (all-trans retinoic acid, retinyl acetate and 1,25-dihydroxyvitamin D(3)) on the differentiation-linked expression of the lipoprotein lipase (LPL) gene. As assessed by the increase in LPL gene expression after 3 day cultivation, like in mammalian adipocytes, insulin enhanced the adipocyte differentiation in a concentration-dependent manner. During 2 week cultivation, bovine insulin promoted lipid accumulation in differentiating adipocytes concentration-dependently until the terminal differentiation. These results indicate that the differentiation of fish adipocytes is inducible by insulin alone. T(3) alone had no effect but enhanced the differentiation-linked LPL gene expression in the presence of insulin. Fat-soluble vitamins, unlike in mammalian adipocytes, did not show any significant effects. The method developed in this study should be of interest for the characterization of factors involved in fish adipocyte differentiation.  相似文献   

18.
19.
Song JH  Kim JM  Kim SH  Kim HJ  Lee JJ  Sung MH  Hwang SY  Kim TS 《Life sciences》2003,73(13):1705-1719
It is now recognized that precise patterns of differentially expressed genes ultimately direct a particular cell toward a given lineage. In this study, we compared the expression profiles of cancer-related genes by cDNA microarray analysis during the differentiation of human promyelocytic leukemia HL-60 cells into either monocytes or granulocytes. RNA was isolated at times 0, 6, 12, 24, 36, 48, and 72 h following stimulation of differentiation with all-trans retinoic acid (all-trans RA) or 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], and hybridized to the microarray gene chips containing 872 genes related to cell-cycles, oncogenes and leukemias. Several genes were commonly or differentially regulated during cell differentiation into either lineage, as demonstrated by both hierarchical and self-organizing map clustering analysis. At 72 h the expression levels of 45 genes were commonly up- or down-regulated at least a twofold in both lineages. Most importantly, 32 genes including alpha-L-fucosidase gene and adducin gamma subunit gene were up- or down-regulated only in all-trans RA-treated HL-60 cells, while 12 genes including interleukin 1beta and hypoxia-inducible factor 1alpha were up- or down-regulated only in 1,25-(OH)(2)D(3)-treated HL-60 cells. The expression of selected genes was confirmed by Northern blot analysis. As expected, some genes identified have not been examined during HL-60 cell differentiation into either lineage. The identification of genes associated with a specific differentiation lineage may give important insights into functional and phenotypic differences between two lineages of HL-60 cell differentiation.  相似文献   

20.
HL-60 is a human promyelocytic cell line which was found to be capable of differentiating toward a macrophage-like or granulocyte-like phenotype. Histochemical analysis demonstrated that incubation of cells in the presence of phorbol myristate acetate (PMA) or 1,25-dihydroxyvitamin D3 induced varying degrees of monocytic differentiation, while incubation in the presence of retinoic acid (RA) or dimethyl sulfoxide (DMSO) induced granulocytic differentiation. The differentiation induced by PMA, RA, and to a lesser extent DMSO, was accompanied by the induction of plasminogen activator inhibitor expression. mRNA analysis of control and PMA-induced cultures revealed the induction of a 2-kb message in treated cells which hybridized with a PAI-2-specific oligonucleotide probe. This is consistent with the literature concerning the expression of PAI by macrophages and granulocytes. No hybridization was detected with a PAI-1 specific probe. Expression of PAI by cells of hematopoietic origin appears to be associated with differentiation or stimulation of committed cells. Furthermore, PAI-2 expression by HL-60 cells is not restricted to one specific hematopoietic lineage. Since other cells of hematopoietic origin such as platelets express PAI-1, future studies using pluripotential cell lines could provide information on the initial events of lineage commitment and gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号