首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular polysaccharides (EPS) produced by Pseudomonas syringae pv. phaseolicola are obviously composed of two main components: the long known levan consisting of fructose, and a mannuronan consisting mainly of mannuronic acid (manA), thus resembling alginic acid (alginate). The identification of manA was established by TLC utilizing different developing systems, and by cellulose acetate electrophoresis in different buffers. References were authentic uronic acids and hydrolyzed authentic alginate. A rough quantification of the “alginate” present in crude EPS was achieved with a selective colour reaction which largely excluded compounds other than uronic acids. Levan was only synthesized with sucrose as primary carbon source. When grown on several other sugars and related compounds “alginate” was the predominant component of the EPS. Additionally, rhamnose, fucose, glucose and amino sugars were found in some instances in hydrolysates of crude EPS, suggesting the release of lipopolysaccharides (LPS) from the bacterial cell walls during culture. Growth on carbon sources not related to sugars resulted in these “LPS” as the main constituent of EPS. After cultivation with sucrose, the “alginate” was restricted to the “slime” fraction of the EPS. In the “capsular” fraction, levan was predominating. A screening program revealed the capacity to synthesize the “alginate” in six additional P. syringae pathovars: pisi, lachrymans, aptata, tomato, syringae, and glycinea. All of the strains tested so far produced levan from sucrose, however, the “alginate” was formed not by all of them. There was a tendency that fresh isolates produced more “alginate” than strains subcultured for an extended time in vitro. This was also true for the total amount of EPS.  相似文献   

2.
The cell surface hydrophobicity and charge as well as surface polysaccharides of eight independent prototrophic hrp::-Tn5 mutants (Lindgren et al., J. Bacteriol. 168 , 512–522, 1986) were compared to the wild-type parent strain NPS3121 of Pseudomonas syringae pv. phaseolicola. No significant differences were found in cell surface charge, but mutant strain NPS4005 exhibited significantly lower cell surface hydrophobicity than the wild-type and the other mutant strains. The mutant strains all retained the ability to produce the exopolysaccharides (EPS) levan, a neutral fructan, and alginate, an acidic polymer. Relative amounts of EPS produced in vitro was dependent on culture conditions. Lipopolysaccharide (LPS) chemotypes were similar for all nine strains. Chemical as well as 13C-NMR analyses of the O-antigens from four wild-type strains of P. s. pv. phaseolicola representing two physiological races as well as the O-antigens of two strains of P. s. pv. syringae which belong to the same serogroup as P. s. pv. phaseolicola indicated that all of the O-antigens were very similar if not identical. LPS of three strains of P. s. pv. phaseolicola produced in vitro or in planta were also compared and no significant differences were detected. The altered phenotype of the Tn5 mutants of P. s. pv. phaseolicola does not appear to be due to changes in the ability to produce exopolysaccharides or to an altered composition of cell surface polysaccharides (LPS and EPS). However, a change in an unidentified cell surface component(s) leading to lowered cell surface hydrophobicity of mutant strain NPS4005 may be important.  相似文献   

3.
In order to understand the mode of action of taxonomically related Pseudomonas syringae pathovar strains that infect pea, tomato, and soya bean, we examined their extracellular polysaccharides (EPS). Maximum production of polysaccharide in shake culture of these pathogens was observed between 24 and 60 h. P. syringae pv. pisi 519, the bacterial blight pathogen of pea, produced a higher amount of polysaccharide (34.87 g/mL) at 60 h compared with 32.67 g/mL produced by P. syringae pv. glycinea NCPPB 1783, the bacterial blight pathogen of soya bean, and 30.03 g/mL produced by P. syringae pv. tomato NCPPB 269, the bacterial speck pathogen of tomato. EPS produced by P. syringae pv. pisi 519, P. syringae pv. tomato NCPPB 269, and P. syringae pv. glycinea NCPPB 1783 was characterized with infrared (FTIR), nuclear magnetic resonance (NMR), high performance thin layer chromatography, (HPTLC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. HPTLC profiles revealed the presence of glucose and glucuronic acid in all bacteria and mannose only in P. syringae pv. tomato. Molecular mass of EPS of P. syringae pv. pisi (m/z 933.8), P. syringae pv. tomato (m/z 950.4), and P. syringae pv. glycinea (m/z 933.5) was confirmed by MALDI-TOF mass spectrometry.  相似文献   

4.
Chlorophyll fluorescence imaging has been used to analyse the response elicited in Phaseolus vulgaris after inoculation with Pseudomonas syringae pv. phaseolicola 1448A (compatible interaction) and P. syringae pv. tomato DC3000 (incompatible interaction). With the aim of modulating timing of symptom development, different cell densities were used to inoculate bean plants and the population dynamics of both bacterial strains was followed within the leaf tissue. Fluorescence quenching analysis was carried out and images of the different chlorophyll fluorescence parameters were obtained for infected as well as control plants at different timepoints post-infection. Among the different parameters analysed, we observed that non-photochemical quenching maximised the differences between the compatible and the incompatible interaction before the appearance of visual symptom. A decrease in non-photochemical quenching, evident in both infiltrated and non-infiltrated leaf areas, was observed in P. syringae pv. phaseolicola-infected plants as compared with corresponding values from controls and P. syringae pv. tomato-infected plants. No photoinhibitory damage was detected, as the maximum photosystem II quantum yield remained stable during the infection period analysed.  相似文献   

5.
Native EPS produced by Pseudomonas syringae pv. phaseolicola in vitro was separated by ion exchange chromatography on DEAE fractogel into three different polysaccharide fractions. A neutral polysaccharide eluting with the void volume yielded only fructose upon hydrolysis and exhibited an IR spectrum similar to authentic levan. At about 300 mM KCl a mannuronan eluted. Comparison with authentic alginate by IR spectroscopy, elution behaviour during DEAE-fractogel column chromatography, and monomer composition (mannuronic acid and traces of guluronic acid) confirmed the identity of this fraction as a bacterial alginate. It contained about 56 mol% acetyl groups. A third polysaccharide eluted at about 160 mM KCl. Its monomeric composition (rhamnose, fucose, glucose, and amino sugars), elution behaviour upon DEAE-fractogel column chromatography, and TLC patterns, closely resembled the sugar moiety of lipopolysaccharides (LPS) from, Pseudomonas syringae pv. phaseolicola. The protein component of crude EPS represented a fourth macromolecular fraction. It was not covalently linked to any of the polysaccharides since it could be removed from the EPS by phenol extraction.  相似文献   

6.
A multilocus enzyme electrophoresis technique was developed to detect variation in seven enzyme loci among isolates ofPseudomonas syringae pv.phaseolicola, representing three races from different geographical locations, the causal agent of the halo blight disease of beans. Cellulose acetate gel electrophoresis of seven enzymes revealed 19 electrotypes (ET) among 21Pseudomonas syringae pv.phaseolicola isolates. One of the pathovarsyringae and one of the pathovartomato isolates were represented by two different ET. The population of Turkish isolates and three races of the pathovarphaseolicola appeared to be genetically diverse.  相似文献   

7.
Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight disease of bean (Phaseolus vulgaris) produces Phaseolotoxin (Nδ-(N′-sulpho-diaminophosphinyl)-L-ornithyl-alanyl-homoarginine) — a phytotoxic secondary metabolite — under laboratory conditions in a synthetic medium. Permeabilized (EDTA-treatment) and immobilized (Agar Agar) cells of the bacterium are capable of producing Phaseolotoxin. Therefore an “in situ” production of this microbial phytoeffective compound using immobilized and permeabilized cells of Pseudomonas syringae pv. phaseolicola is possible.  相似文献   

8.
Two hundred and twenty-nine ethylene-producing strains of bacteria were identified among 757 bacterial strains which included 13 strains of chemolithotrophs. The ethylene-producing bacetria were classified into three groups, namely, l-methionine-dependent, 2-ketoglutarate-dependent and meat extract-dependent, with reference to their respective biosynthetic pathways to ethylene. Two hundred and twenty-five l-methionine-dependent strains were obtained, while the only 2-ketoglutarate-dependent strain was Pseudomonas syringae pv. phaseolicola PK2. Three strains of chemolithotrophs had ethylene-forming capacity, and Thiobacillus novellus IFO 12443 had a novel ethylene-forming system which was dependent upon the addition of meat extract into the culture medium. The ethylene-forming systems of two of the strains of Thiobacillus ferrooxidans have not yet been characterized. Several strains of non-ethylene-producing bacteria failed to produce ethylene, even when l-methionine was added to the culture medium. We examined the causes of their lack of ethylene-producing ability and judged that these strains are either NADH:Fe(III)EDTA oxidoreductase-less or methionine-uptake activity-less.  相似文献   

9.
Summary A group of pathogenicity genes was previously identified in Pseudomonas syringae pv. phaseolicola which controls the ability of the pathogen to cause disease on bean and to elicit the hypersensitive response on non-host plants. These genes, designated hrp, are located in a ca. 20 kb region which was referred to as the hrp cluster. Homologous sequences to DNA segments derived from this region were detected in several pathovars of P. syringae but not in symbiotic, saprophytic or other phytopathogenic bacteria. A Tn5-induced Hrp- mutation was transferred from P. syringae pv. phaseolicola to P. syringae pv. tabaci and to three races of P. syringae pv. glycinea by marker exchange mutagenesis. The resulting progeny were phenotypically Hrp-, i.e. no longer pathogenic on their respective hosts and unable to elicit the hypersensitive response on non-host plants. These mutants were restored to wild-type phenotype upon introduction of a recombinant plasmid carrying the corresponding wild-type locus from P. syringae pv. phaseolicola. The marker exchange mutants of P. syringae pv. glycinea psg0 and Psg5 which carry different avr genes for race specific avirulence did not elicit a hypersensitive response on incompatible soybean cultivars. It appears, therefore, that P. syringae pathovars possess common genes for pathogenicity which also control their interaction with non-host plants. Furthermore, the expression of race/cultivar specific incompatibility of P. syringae pv. glycinea requires a fully functional hrp region in addition to the avr genes which determine avirulence on single-gene differential cultivars of soybean.  相似文献   

10.
Bacterial exopolysaccharide (EPS) was extracted from infected leaves of several host plants inoculated with phytopathogenic strains of Pseudomonas syringae pathovars. Extraction was by a facilitated diffusion procedure or by collection of intercellular fluid using a centrifugation method. The extracted EPS was purified and characterized. All bacterial pathogens which induced watersoaked lesions on their host leaves, a characteristic of most members of this bacterial group, were found to produce alginic acid (a polymer consisting of varying ratios of mannuronic and guluronic acids). Only trace amounts of bacterial EPS could be isolated from leaves inoculated with a pathovar (pv. syringae) which does not induce the formation of lesions with a watersoaked appearance. Guluronic acid was either present in very low amounts or absent in the alginic acid preparations. All bacterial alginates were acetylated (7-11%). Levan (a fructan) was apparently not produced as an EPS in vivo by any of the pathogens tested.  相似文献   

11.
Summary Bioconversion of atmospheric carbon dioxide to ethylene was studied in a recombinant cyanobacterium. The gene for the ethylene-forming enzyme ofPseudomonas syringae pv.phaseolicola PK2 was cloned and expressed in the cyanobacteriumSynechococcus PCC7942 R2-SPc by use of a shuttle vector pUC303. The ethylene-forming activityin vivo ofSynechococcus PCC7942 R2-SPc that carried the gene for the ethylene-forming enzyme ofP. syringae pv.phaseolicola PK2 was one-fifth of that ofE. coli JM109 that harbored the same plasmid. The enzyme accounted for 0.021% by weight of the total soluble protein inSynechococcus PCC7942 R2-SPc.  相似文献   

12.
Pseudomonas syringae pathovar phaseolicola, which produces alginate during stationary growth phase, displayed elevated extracellular alginate lyase activity during both mid-exponential and late-stationary growth phases of batch growth. Intracellular activity remained below 22% of the total activity during exponential growth, suggesting that alginate lyase has an extracellular function for this organism. Extracellular enzyme activity in continuous cultures, grown in either nutrient broth or glucose–simple salts medium, peaked at 60% of the washout rate, although nutrient broth-grown cultures displayed more than twice the activity per gram of cell mass. These results imply that growth rate, nutritional composition, or both initiate a release of alginate lyase from viable P. syringae pv. phaseolicola, which could modify its entrapping biofilm. Received: 14 April 2000 / Accepted: 11 August 2000  相似文献   

13.
Comparative studies were based on 216 isolates of the Pseudomonas syringae pathovars syringae, morsprunorum and persicae, mainly originating from fruit trees in several European countries, but also from USA, USSR, South Africa, New Zealand and Turkey. All the identified morsprunorum isolates were obtained from stonefruit trees, which were also a source of some syringae isolates. Fluorescent strains HR negative on tobacco leaves were regarded as saprophytic pseudomonads. Nearly all the HR positive but none of the HR negative isolates caused lesions on sweet cherry shoots and fruitlets. The largest lesions on sweet cherry shoots were caused by the morsprunorum isolates. Syringae strains always caused lesions on pear fruitlets, whereas the morsprunorum strains never did so. Some degree of specialization within the pathovar syringae seemed to exist. Cultural and biochemical tests well suited to differentiate the three pathovars were as follows: colour after growth in sucrose nutrient broth, liquefaction of gelatin, activity of β-glucosidase (arbutin) and tyrosinase, use of L-leucine, L(+)tartrate and DL-lactate as sole carbon source, fluorescent pigment production, crystaline inclusions in the nutrient agar medium, and growth rate in 0.2% yeast extract nutrient broth. Tests for longevity on nutrient agar with 5% sucrose turned out to be fairly unreliable. A tube assay gave the most consistent results when studying utilization of organic substrates. The capability for gelatin liquefaction correlated with virulence, and mucoid isolates showed a tendency for higher aggressiveness than rough colony variants. Page of protein extracts obtained from freeze-pressed bacterial cells revealed that the pathovars syringae and morsprunorum could be differentiated due to specific isoenzyme patterns for esterases and acid phosphatases. It was concluded that several pathogenicity, cultural and biochemical tests allowed an unequivocal differentiation of the Pseudomonas syringae pvs. syringae and morsprunorum. Some of the discriminating biochemical characters may, play a role during pathogenesis.  相似文献   

14.
Pseudomonas syringae pv. tomato, the causal agent for bacterial speck of tomato, produces the phytotoxin coronatine. A 5.3-kilobase XhoI fragment from the chromosomal region controlling toxin production was cloned into the plasmid pGB2, and the resulting recombinant plasmid, pTPR1, was tested for its ability to serve as a diagnostic probe for P. syringae pv. tomato. In a survey of 75 plant-associated bacteria, pTPR1 hybridized exclusively to those strains that produced coronatine. The detection limit for this probe, which was labeled with the Chemiprobe nonradioactive reporter system, was approximately 4 × 103 CFU of lesion bacteria. During the 1989 growing season, a total of 258 leaf and fruit lesions from nine tomato fields were screened for P. syringae pv. tomato by using pTPR1 and the culture method of detection. The best agreement between the two methods, 90%, occurred early in the season with samples taken from relatively young (5-week-old) plants. Young plants also had a higher percentage of P. syringae pv. tomato-positive lesions. P. syringae pv. tomato was the only coronatine producer recovered from the nine tomato fields. All 244 P. syringae pv. tomato strains isolated during this study reacted strongly with the probe. The P. syringae pv. tomato population of healthy field tomato leaves was determined by a pTPR1 colony hybridization procedure. Every probe-positive colony that was isolated and characterized was identified as P. syringae pv. tomato. The pTPR1 probe should expedite disease diagnosis and facilitate epidemiological studies of this pathogen. It also should aid in screening transplant seedlings for bacterial speck infestation.  相似文献   

15.
Summary The in vitro culture responses from different explants of a race-specific resistant cultivar (Red Mexican) and a racesusceptible cultivar (Palme?a) to halo-blight pathogen (Pseudomonas syringae pv. phaseolicola were studied. Two kinds of filtrate obtained from a phaseolotoxin producer wild type and a non-producer mutant of P. syringae pv. phaseolicola race-7 were used. Callus formation of Red Mexican was significantly reduced in the presence of phaseolotoxin. Bud-shoot growth was more sensitive than callus formation to other metabolites present in the pathogen filtrate, but the presence of phaseolotoxin in the media showed a positive correlation between resistance to halo blight race-7 pathogen and bud-shoot growth. Our results indicate that differential in vitro responses are influenced by the plant genotype and by the metabolite composition and concentration of the filtrate.  相似文献   

16.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

17.
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.  相似文献   

18.
The effects of Chinese cabbage (Brassica rapa subsp. pekinensis) carrying cry1AC derived from Bacillus thuringiensis (Bt) on leaf bacterial community were examined by analyzing the horizontal transfer of trans-gene fragments from plants to bacteria. The effect of plant pathogenic bacteria on the gene transfer was also examined using Pseudomonas syringae pathovar. maculicola. The frequency of hygromycin-resistant bacteria did not alter in Bt leaves, though slight increase was observed in Pseudomonas-infected Bt leaves with no statistical significance. The analysis of bacterial community profiles using the denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated that there were slight differences between Bt and control Chinese cabbage, and also that infected tissues were dominated by P. syringae pv. maculicola. However, the cultured bacterial pools were not found to contain any transgene fragments. Thus, no direct evidence of immediate gene transfer from plant to bacteria or acquisition of hygromycin resistance could be observed. Still, long-term monitoring on the possibility of gene transfer is necessary to correctly assess the environmental effects of the Bt crop on bacteria.  相似文献   

19.
Two genotypes of tomato A 100 and Ontario 7710 which were inoculated separately with four strains of Pseudomonas syringae pv. tomato differed significantly in disease severity (susceptibility) to bacterial speck. At both concentrations of inoculum of each strain used (107 and 108 cfu/ml) A 100 appeared to be highly susceptible whereas Ontario 7710 showed very low or no susceptibility. The significant differences in virulence between strains and in response of tomato plants in three replicate experiments were found. Generally, concentration of inoculum 107 cfu/ml was too low to induce consistent level of disease severity. The obtained results indicate the importance of consistent and favorable conditions for disease development in screening of tomato resistance to bacterial speck.  相似文献   

20.
In a recent screen for novel virulence factors involved in the interaction between Pseudomonas savastanoi pv. savastanoi and the olive tree, a mutant was selected that contained a transposon insertion in a putative cyclic diguanylate (c‐di‐GMP) phosphodiesterase‐encoding gene. This gene displayed high similarity to bifA of Pseudomonas aeruginosa and Pseudomonas putida. Here, we examined the role of BifA in free‐living and virulence‐related phenotypes of two bacterial plant pathogens in the Pseudomonas syringae complex, the tumour‐inducing pathogen of woody hosts, P. savastanoi pv. savastanoi NCPPB 3335, and the pathogen of tomato and Arabidopsis, P. syringae pv. tomato DC3000. We showed that deletion of the bifA gene resulted in decreased swimming motility of both bacteria and inhibited swarming motility of DC3000. In contrast, overexpression of BifA in P. savastanoi pv. savastanoi had a positive impact on swimming motility and negatively affected biofilm formation. Deletion of bifA in NCPPB 3335 and DC3000 resulted in reduced fitness and virulence of the microbes in olive (NCPPB 3335) and tomato (DC3000) plants. In addition, real‐time monitoring of olive plants infected with green fluorescent protein (GFP)‐tagged P. savastanoi cells displayed an altered spatial distribution of mutant ΔbifA cells inside olive knots compared with the wild‐type strain. All free‐living phenotypes that were altered in both ΔbifA mutants, as well as the virulence of the NCPPB 3335 ΔbifA mutant in olive plants, were fully rescued by complementation with P. aeruginosa BifA, whose phosphodiesterase activity has been demonstrated. Thus, these results suggest that P. syringae and P. savastanoi BifA are also active phosphodiesterases. This first demonstration of the involvement of a putative phosphodiesterase in the virulence of the P. syringae complex provides confirmation of the role of c‐di‐GMP signalling in the virulence of this group of plant pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号