首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An evolutionary algorithm was applied to a mechanistic model of the mammary gland to find the parameter values that minimised the difference between predicted and actual lactation curves of milk yields in New Zealand Jersey cattle managed at different feeding levels. The effect of feeding level, genetic merit, body condition score at parturition and age on total lactation yields of milk, fat and protein, days in milk, live weight and evolutionary algorithm derived mammary gland parameters was then determined using a multiple regression model. The mechanistic model of the mammary gland was able to fit lactation curves that corresponded to actual lactation curves with a high degree of accuracy. The senescence rate of quiescent (inactive) alveoli was highest at the very low feeding level. The active alveoli population at peak lactation was highest at very low feeding levels, but lower nutritional status at this feeding level prevented high milk yields from being achieved. Genetic merit had a significant linear effect on the active alveoli population at peak and mid to late lactation, with higher values in animals, which had higher breeding values for milk yields. A type of genetic merit × feeding level scaling effect was observed for total yields of milk and fat, and total number of alveoli produced from conception until the end of lactation with the benefits of increases in genetic merit being greater at high feeding levels. A genetic merit × age scaling effect was observed for total lactation protein yields. Initial rates of differentiation of progenitor cells declined with age. Production levels of alveoli from conception to the end of lactation were lowest in 5- to 8-year-old animals; however, in these older animals, quiescent alveoli were reactivated more frequently. The active alveoli population at peak lactation and rates of active alveoli proceeding to quiescence were highest in animals of intermediate body condition scores of 4.0 to 5.0. The results illustrate the potential uses of a mechanistic model of the mammary gland to fit a lactation curve and to quantify the effects of feeding level, genetic merit, body condition score, and age on mammary gland dynamics throughout lactation.  相似文献   

2.
3.
The study investigated the effect of the place of storage of milk in the mammary gland on progesterone concentrations in whole milk, skim milk and milk fat. Skim milk, milk fat and whole milk progesterone concentrations were lower (P < 0.05) in milk fractions obtained from the cisternal part of the mammary gland compared to those in the milk fractions from the alveoli. Mean milk fat concentrations did not mirror the changes in the mean skim milk, milk fat and whole milk progesterone concentrations. After administration of oxytocin, milk fat concentrations rose significantly (P < 0.01). At the same time, skim milk and milk fat progesterone concentrations remained unchanged (P > 0.05), compared to those in the milk fractions of alveolar origin, obtained before oxytocin administration. Skim milk and whole milk progesterone concentrations were higher (P < 0.01) in composite milk and in milk samples collected 1 h after milking, compared to concentrations in the milk samples collected before morning milking and at 3, 5, 7 and 9 h after milking. The results suggest that defatted milk, milk fat and whole milk progesterone concentrations were affected by the place of storage of the milk in the mammary gland, and that this effect is independent of milk fat content. Time of milk sampling, not the milk fat concentration, in relation to time of milking, was a critical factor in determining skim milk, milk fat and whole milk progesterone. The study also revealed that the concentrations of the other milk components, somatic cell count, lactose and protein were affected by the place of storage of milk in the mammary gland.  相似文献   

4.
This review describes the effects of milking (routine and management) on milk yield and milk quality on dairy ruminants and examines the physiological effects of milking on the synthesis and secretion of milk. During milking, differences in the composition of milk as a result of milk ejection reflex are observed: the cisternal milk, immediately available, contains little fat, then milk ejection provokes active transport of high-fat content alveolar milk, into the cisternal compartment. Milking frequency has the capacity to affect milk production too. So, an increase in milking frequency augments milk yield whereas a decrease in milking frequency decreases milk production, with effects on milk composition. The milk ejection reflex is mediated by oxytocin, which induces myoepithelial cell contraction. Nevertheless, other actions of oxytocin may exist, such as a direct effect on proliferation and differentiation of myoepithelial cells and on secretory processes in the mammary epithelial cells.  相似文献   

5.
Post-lactational involution of the mammary gland is initiated within days of weaning. Clearing of cells occurs by apoptosis of the milk-secreting luminal cells in the alveoli and through stromal tissue remodeling to return the gland almost completely to its pre-pregnant state. The pathways that specifically target involution of the luminal cells in the alveoli but not the basal and ductal cells are poorly understood. In this study we show in cultured human mammary alveolar structures that the involution process is initiated by fresh media withdrawal, and is characterized by cellular oxidative stress, expression of activated macrophage marker CD68 and finally complete clearing of the luminal but not basal epithelial layer. This process can be simulated by ectopic addition of reactive oxygen species (ROS) in cultures without media withdrawal. Cells isolated from post-involution alveoli were enriched for the CD49f+ mammary stem cell (MaSC) phenotype and were able to reproduce a complete alveolar structure in subcultures without any significant loss in viability. We propose that the ROS produced by accumulated milk breakdown post-weaning may be the mechanism underlying the selective involution of secretory alveolar luminal cells, and that our culture model represents an useful means to investigate this and other mechanisms further.  相似文献   

6.
The goat was chosen as the model system for investigating mammary gland development in the ruminant. Histological and immunocytochemical staining of goat mammary tissue at key stages of development was performed to characterize the histogenesis of the ruminant mammary gland. The mammary gland of the virgin adult goat consisted of a ductal system terminating in lobules of ductules. Lobuloalveolar development of ductules occurred during pregnancy and lactation which was followed by the regression of secretory alveoli at involution. The ductal system was separated from the surrounding stroma by a basement membrane which was defined by antisera raised against laminin and Type IV collagen. Vimentin, smooth-muscle actin and myosin monoclonal antisera as well as antisera to cytokeratin 18 and multiple cytokeratins stained a layer of myoepithelial cells which surround the ductal epithelium. Staining of luminal epithelial cells by monoclonal antibodies to cytokeratins was dependent on their location along the ductal system, from intense staining in ducts to variable staining in ductules. The staining of epithelial cells by monoclonals to cytokeratins also varied according to the developmental status of the goat, being maximal in virgin and involuting glands, lowest at lactation and intermediate during gestation. In addition, cuboidal cells, situated perpendicular to myoepithelial cells and adjacent to alveolar cells in secretory alveoli, were also stained by cytokeratin monoclonal antibodies and antisera to the receptor protein, erbB-2, in similar fashion to luminal epithelial cells. These results demonstrate that caprine mammary epithelial cell differentiation along the alveolar pathway is associated with the loss of certain types of cytokeratins and that undifferentiated and secretory alveolar epithelial cells are present within lactating goat mammary alveoli.  相似文献   

7.
This research was carried out on seven Damascus goats, to study the relationship between milk production, during advancing lactation, and the changes in secretory mammary cells frequency and cellular activity. Biopsies were obtained from the mammary gland at the three stages of lactation, early, mid and late, for histological and histochemical studies. The histological structures of the mammary gland showed clear differences between lactation stages—being more developed in the early and the mid stages, compared to the late stage of lactation. The number of the alveolar secretory cells increased from the early to the mid stage of lactation by 12.9% and then was reduced at the late stage by 35.9% from that at the mid stage. The milk yield increased by 51.3% from the early to the mid stage, and then was reduced at the late stage by 71.4% from that of the mid stage. The total sectional areas of plate equal to 1.22 mm2/plate of the alveoli were the smallest during late lactation (0.36 mm2/plate) compared to that during the early and the mid stage of lactation (0.50 and 1.17 mm2/plate, respectively). Numerous loci of alkaline phosphatase enzyme (AP) were apparent on the outer surface of the alveolar secretory cells at the early and the mid stages of lactation—suggesting that this enzyme plays an important physiological role in the apical membrane of the alveolar epithelial cells during lactation. Dense protein staining of these cells as well as increased frequency of DNA expression denote great development and increased numbers of these cells at early and mid stages of lactation. This was accompanied by a high level of milk secretion reaching 939.3 ± 130 and 1421.4 ± 123.4 ml/head/day, respectively. In contrast, at the late stage of lactation, the size of alveoli was reduced and few alveoli showed weak AP activity, weak protein manifestation and the lowest frequency of DNA loci. This coincided with the reduction in milk yield (407 ml/head/day). It could be concluded that the stages of the lactation influence the cell number and activity of the mammary parenchyma.  相似文献   

8.
9.
Adult mammary tissue has been considered "resting" with minimal morphological change. Here, we reveal the dynamic nature of the nulliparous murine mammary gland. We demonstrate specific changes at the morphological and cellular levels, and uncover their relationship with the murine estrous cycle and physiological levels of steroid hormones. Differences in the numbers of higher-order epithelial branches and alveolar development led to extensive mouse-to-mouse mammary variations. Morphology (assigned grades 0-3) ranged from a complete lack of alveoli to the presence of numerous alveoli emanating from branches. Morphological changes were driven by epithelial proliferation and apoptosis, which differed between ductal versus alveolar structures. Proliferation within alveolar epithelium increased as morphological grade increased. Extensive alveolar apoptosis was restricted to tissue exhibiting grade 3 morphology, and was approximately 14-fold higher than at all other grades. Epithelial proliferation and apoptosis exhibited a positive relationship with serum levels of progesterone, but not with 17beta-estradiol. Compared with other estrous stages, diestrus was unique in that the morphological grade, epithelial proliferation, apoptosis, and progesterone levels all peaked at this stage. The regulated tissue remodeling of the mammary gland was orchestrated with mRNA changes in specific matrix metalloproteinases (MMP-9 and MMP-13) and specific tissue inhibitors of metalloproteinases (TIMP-3 and TIMP-4). We propose that the cyclical turnover of epithelial cells within the adult mammary tissue is a sum of spatial and functional coordination of hormonal and matrix regulatory factors.  相似文献   

10.
11.
Mammary gland development is controlled by a dynamic interplay between endocrine hormones and locally produced factors. Biogenic monoamines (serotonin, dopamine, norepinephrine, and others) are an important class of bioregulatory molecules that have not been shown to participate in mammary development. Here we show that mammary glands stimulated by prolactin (PRL) express genes essential for serotonin biosynthesis (tryptophan hydroxylase [TPH] and aromatic amine decarboxylase). TPH mRNA was elevated during pregnancy and lactation, and serotonin was detected in the mammary epithelium and in milk. TPH was induced by PRL in mammosphere cultures and by milk stasis in nursing dams, suggesting that the gene is controlled by milk filling in the alveoli. Serotonin suppressed beta-casein gene expression and caused shrinkage of mammary alveoli. Conversely, TPH1 gene disruption or antiserotonergic drugs resulted in enhanced secretory features and alveolar dilation. Thus, autocrine-paracrine serotonin signaling is an important regulator of mammary homeostasis and early involution.  相似文献   

12.
When rats are kept iodide-deficient, atrophy and necrosis takes place in the mammary gland and areas of dysplasia and atypia are seen. Administration of estradiol to iodide-deficient rats stimulates cell division in the gland and leads to the formation of alveoli. Continued stimulation by estradiol produces changes in the newly-formed alveolar cells. Their nucleoli are altered and show a separation of components. Ribosomes and lipid droplets increase and the cells synthesize large vacuoles containing protein. The secretion of great quantities of this material into areas of the tissue where regressive changes have occurred undoubtedly contributes to the formation of cysts within the gland. The present findings indicate that iodide-deficiency alters the structure and function of mammary gland alveolar cells and makes them highly sensitive to stimulation by estradiol.  相似文献   

13.
Experiments involving beta-catenin loss- and gain-of-function in the mammary gland have decisively demonstrated the role of this protein in normal alveologenesis. However, the relationship between hormonal and beta-catenin signaling has not been investigated. In this study, we demonstrate that activated beta-catenin rescues alveologenesis in progesterone receptor (PR; Pgr)-null mice during pregnancy. Two distinct subsets of mammary cells respond to expression of DeltaN89beta-catenin. Cells at ductal tips are inherently beta-catenin-responsive and form alveoli in the absence of PR. However, PR activity confers beta-catenin responsiveness to progenitor cells along the lateral ductal borders in the virgin gland. Once activated by beta-catenin, responding cells switch on an alveolar differentiation program that is indistinguishable from that observed in pregnancy and is curtailed by PR signaling.  相似文献   

14.
Protein kinase C (PKC) is involved in signaling that modulates the proliferation and differentiation of many cell types, including mammary epithelial cells. In addition, changes in PKC expression or activity have been observed during mammary carcinogenesis. In order to examine the involvement of specific PKC isoforms during normal mammary gland development, the expression and localization of PKCs alpha, delta, epsilon and zeta were examined during puberty, pregnancy, lactation, and involution. By immunoblot analysis, expression of PKC alpha, delta, epsilon and zeta proteins was increased in mammary epithelial organoids during the transition from puberty to pregnancy. In mammary gland frozen sections, PKCs alpha, delta, epsilon and zeta were stained in the luminal epithelium and myoepithelium, in varying isoform-and developmental stage-specific locations. PKC alpha was found in a punctate apical localization in the luminal epithelium during pregnancy. During lactation, PKC epsilon was present in the nucleus, and PKC zeta was concentrated in the subapical region of the luminal epithelium. Additionally, marked staining for PKCs alpha, delta, epsilon, and zeta was observed in the myoepithelial cells at the base of ducts and alveoli. This basal ductal and alveolar staining differed in intensity in a developmentally-specific fashion. During most time points (virgin, pregnant, lactating, and early involution), myoepithelial cells of the duct were more intensely stained than those lining the alveoli for PKCs alpha, delta, epsilon and zeta. During late involution (days 9-12), the preferential staining of ducts was lost or reversed, and the myoepithelial cells lining the regressing alveolar structures stained equally (PKCs epsilon and zeta) or more intensely (PKCs alpha and delta), coincident with the thickening of the myoepithelial cells surrounding the regressing alveoli. The increased PKC isoform staining at the base of alveoli during involution suggests that alveolar regression may be influenced by alterations in signaling in the alveolar myoepithelium.  相似文献   

15.
16.
17.
Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known to be involved in early embryonic development of the mammary gland via mesenchymal cells, its role in later epithelial cellular differentiation has not been examined. The majority of the mammary gland development occurs post-natal, and its final functional differentiation is characterized by the emergence of alveolar cells that produce milk proteins. Here, we tested the hypothesis that bone morphogenetic protein receptor 1A (BMPR1A) function was required for mammary epithelial cell differentiation. We found that the BMPR1A-SMAD1/5/8 pathway was predominantly active in undifferentiated mammary epithelial cells, compared with differentiated cells. Reduction of BMPR1A mRNA and protein, using short hairpin RNA, resulted in a reduction of SMAD1/5/8 phosphorylation in undifferentiated cells, indicating an impact on this pathway. When the expression of the BMPR1A gene knocked down in undifferentiated cells, this also prevented beta-casein production during differentiation of the mammary epithelial cells by lactogenic hormone stimulation. Addition of Noggin, a BMP antagonist, also prevented beta-casein expression. Together, this demonstrated that BMP-BMPR1A-SMAD1/5/8 signal transduction is required for beta-casein production, a marker of alveolar cell differentiation. This evidence functionally identifies BMPR1A as a potential new regulator of mammary epithelial alveolar cell differentiation.  相似文献   

18.
The presence of the carbohydrate receptor for PNL has been used to identify the previously described morphological types of epithelial cell produced as the stem cell line rat mammary 25 (Rama 25) differentiates to casein secretory alveolar-like cells in vitro. Thus when cultures of the epithelial stem cell line Rama 25 are treated with neuraminidase, fluorescently-conjugated PNL fails to stain cuboidal cells, stains weakly grey cells, and stains strongly the surface of dark cells. When superconfluent cultures of Rama 25 are treated with dimethyl sulfoxide or retinoic acid and prolactin, estradiol, hydrocortisone, and insulin to induce differentiation to alveolar cells, PNL stains strongly the untreated surfaces of droplet cells and casein-secreting vacuolated cells. PNL-staining of the derivative cell lines with truncated cellular pathways, and quantitative binding of [125I]-labeled PNL to the cultured cells are consistent with this cellular staining pattern. The presence of the carbohydrate receptor for peanut lectin (PNL) has also been used to identify specific epithelial cell types in different mammary structures of the developing rat mammary gland, as they differentiate to casein secretory alveolar cells in vivo. Thus when different structures of the developing rat mammary gland are treated with neuraminidase, peroxidase-conjugated PNL fails to stain histochemically the majority of epithelial cells in ducts, stains the cytoplasm of the majority of epithelial cells in terminal end-buds (TEBs), and stains strongly the luminal surfaces of the majority of epithelial cells in alveolar buds (ABs). PNL also stains the untreated luminal surfaces of alveolar cells, whether or not the cells can be stained with a monoclonal antibody to rat beta-casein. Stimulation of mammary differentiation by an analogue of ethyl retinoate or by perphenazine causes cells in end-buds to bind PNL without the necessity for their desialylation similar to that seen in casein secretory alveoli of lactating rats. In conclusion the different interconverting cell types of Rama 25 which form a pathway to casein-secretory cells in vitro are thus equated with recognisable epithelial cell types in vivo. These results suggest that casein-secretory cells in vivo are generated by similar successive interconversions between the major epithelial cell types present in the different mammary structures in the order: ducts, TEBs, ABs, alveoli, and secretory alveoli.  相似文献   

19.
PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.  相似文献   

20.
Ultrastructural examination of bovine mammary tissues revealed the presence of 9+0 or primary cilia protruding from surfaces of alveolar epithelial and myoepithelial cells. Cilia of epithelial cells protruded approximately 1200 nm into lumina of alveoli and arose from a basal body centriole, the associated centriole of the diplosome, and an accessory rootlet system. Cilia on epithelial cells were more frequently observed than cilia on myoepithelial cells. Occasional cilia made contact with macrophages in the alveolar lumen. The structures were more commonly found in tissues from nonlactating cows, and most were observed in the ventral portion of the mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号