首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The persistence of Mycobacterium tuberculosis is a major cause of concern in tuberculosis (TB) therapy. In the persistent mode the pathogen can resist drug therapy, allowing the possibility of reactivation of the disease. Several protein factors have been identified that contribute to persistence, one of them being the 16-kDa low-molecular-weight mycobacterial heat shock protein Hsp16.3, a homologue of the mammalian eye lens protein alpha-crystallin. It is believed that Hsp16.3 plays a key role in the persistence phase by protecting essential proteins from being irreversibly denatured. Because of the close association of Hsp16.3 with persistence, an attempt has been made to develop inhibitors against it. Random peptide libraries displayed on bacteriophage M13 were screened for Hsp16.3 binding. Two phage clones were identified that bind to the Hsp16.3 protein. The corresponding synthetic peptides, an 11-mer and a 16-mer, were able to bind Hsp16.3 and inhibit its chaperone activity in vitro in a dose-dependent manner. Little or no effect of these peptides was observed on alphaB-crystallin, a homologous protein that is a key component of human eye lens, indicating that there is an element of specificity in the observed inhibition. Two histidine residues appear to be common to the selected peptides. Nuclear magnetic resonance studies performed with the 11-mer peptide indicate that in this case these two histidines may be the crucial binding determinants. The peptide inhibitors of Hsp16.3 thus obtained could serve as the basis for developing potent drugs against persistent TB.  相似文献   

2.
Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis (MTB), was originally identified as an immuno-dominant antigen and later found to be a major membrane protein. In vitro studies show that Hsp16.3 exists as nonamers and undergoes dynamic dissociation/re-association equilibrium in solutions. Nevertheless, neither the details nor the physiological implications of the presence of Hsp16.3 in the plasma membrane have been studied. In this study, we demonstrated that the purified Hsp16.3 proteins were able to interact with the MTB plasma membrane in a specific and reversible manner, suggesting that there might be subunit exchange between membrane-bound Hsp16.3 and soluble Hsp16.3 oligomers. The dissociation of Hsp16.3 oligomers appears to be a prerequisite for its membrane binding, which is interesting in view that the dissociation of small heat shock protein oligomers was also found to be necessary for it to bind denaturing substrate proteins. Furthermore, the oligomeric structure of Hsp16.3 seems to be more dynamic and flexible when incubating with the mycobacterium lipids. The physiological implications of these observations for Hsp16.3, and small heat shock proteins in general, are discussed.  相似文献   

3.
The persistence of Mycobacterium tuberculosis is a major cause of concern in tuberculosis (TB) therapy. In the persistent mode the pathogen can resist drug therapy, allowing the possibility of reactivation of the disease. Several protein factors have been identified that contribute to persistence, one of them being the 16-kDa low-molecular-weight mycobacterial heat shock protein Hsp16.3, a homologue of the mammalian eye lens protein alpha-crystallin. It is believed that Hsp16.3 plays a key role in the persistence phase by protecting essential proteins from being irreversibly denatured. Because of the close association of Hsp16.3 with persistence, an attempt has been made to develop inhibitors against it. Random peptide libraries displayed on bacteriophage M13 were screened for Hsp16.3 binding. Two phage clones were identified that bind to the Hsp16.3 protein. The corresponding synthetic peptides, an 11-mer and a 16-mer, were able to bind Hsp16.3 and inhibit its chaperone activity in vitro in a dose-dependent manner. Little or no effect of these peptides was observed on alphaB-crystallin, a homologous protein that is a key component of human eye lens, indicating that there is an element of specificity in the observed inhibition. Two histidine residues appear to be common to the selected peptides. Nuclear magnetic resonance studies performed with the 11-mer peptide indicate that in this case these two histidines may be the crucial binding determinants. The peptide inhibitors of Hsp16.3 thus obtained could serve as the basis for developing potent drugs against persistent TB.  相似文献   

4.
The oxidation of methionine residues in proteins to methionine sulfoxides occurs frequently and protein repair by reduction of the methionine sulfoxides is mediated by an enzyme, peptide methionine sulfoxide reductase (PMSR, EC 1.8.4.6), universally present in the genomes of all so far sequenced organisms. Recently, five PMSR‐like genes were identified in Arabidopsis thaliana, including one plastidic isoform, chloroplast localised plastidial peptide methionine sulfoxide reductase (pPMSR) that was chloroplast‐localized and highly expressed in actively photosynthesizing tissue ( Sadanandom A et al., 2000 ). However, no endogenous substrate to the pPMSR was identified. Here we report that a set of highly conserved methionine residues in Hsp21, a chloroplast‐localized small heat shock protein, can become sulfoxidized and thereafter reduced back to methionines by this pPMSR. The pPMSR activity was evaluated using recombinantly expressed pPMSR and Hsp21 from Arabidopsis thaliana and a direct detection of methionine sulfoxides in Hsp21 by mass spectrometry. The pPMSR‐catalyzed reduction of Hsp21 methionine sulfoxides occurred on a minute time‐scale, was ultimately DTT‐dependent and led to recovery of Hsp21 conformation and chaperone‐like activity, both of which are lost upon methionine sulfoxidation ( Härndahl et al., 2001 ). These data indicate that one important function of pPMSR may be to prevent inactivation of Hsp21 by methionine sulfoxidation, since small heat shock proteins are crucial for cellular resistance to oxidative stress.  相似文献   

5.
The small heat shock proteins (sHsps), which counteract heat and oxidative stress in an unknown way, belong to a protein family of sHsps and alpha-crystallins whose members form large oligomeric complexes. The chloroplast-localized sHsp, Hsp21, contains a conserved methionine-rich sequence, predicted to form an amphipatic helix with the methionines situated along one of its sides. Here, we report how methionine sulfoxidation was detected by mass spectrometry in proteolytically cleaved peptides that were produced from recombinant Arabidopsis thaliana Hsp21, which had been treated with varying concentrations of hydrogen peroxide. Sulfoxidation of the methionine residues in the conserved amphipatic helix coincided with a significant conformational change in the Hsp21 protein oligomer.  相似文献   

6.
Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (MTB), the etiologic agent of TB. Because of the global health problems of TB, the development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently needed. In this study, we have applied a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process to identify a single aptamer (NK2) that binds to virulent strain M. tuberculosis (H37Rv) with high affinity and specificity. We have found that this aptamer improves CD4(+)T cells to produce IFN-gamma after binding to H37Rv. The different component between H37Rv and BCG was identified as some membrane protein. Moreover, the survival rates of mice challenged with i.v. H37Rv have been prolonged after treatment with single injection of aptamer NK2. The bacterial numbers were significantly lower in the spleen of mice treated with aptamer NK2. The histopathological examination of lung biopsy specimens showed lesser pulmonary alveolar fusion and swelling in the presence of the aptamer. These results suggest that aptamer NK2 has inhibitory effects on M. tuberculosis and can be used as antimycobacterial agent.  相似文献   

7.
8.
Cui ZJ  Han ZQ  Li ZY 《Amino acids》2012,43(2):505-517
The sulfur-containing amino acid residue methionine (Met) in a peptide/protein is readily oxidized to methionine sulfoxide [Met(O)] by reactive oxygen species both in vitro and in vivo. Methionine residue oxidation by oxidants is found in an accumulating number of important proteins. Met sulfoxidation activates calcium/calmodulin-dependent protein kinase II and the large conductance calcium-activated potassium channels, delays inactivation of the Shaker potassium channel ShC/B and L-type voltage-dependent calcium channels. Sulfoxidation at critical Met residues inhibits fibrillation of atherosclerosis-related apolipoproteins and multiple neurodegenerative disease-related proteins, such as amyloid beta, α-synuclein, prion, and others. Methionine residue oxidation is also correlated with marked changes in cellular activities. Controlled key methionine residue oxidation may be used as an oxi-genetics tool to dissect specific protein function in situ.  相似文献   

9.
S I Oshevski 《FEBS letters》1982,143(1):119-123
Carbon-13 nuclear magnetic resonance spectroscopy was used to monitor the preferential sulfoxidation of the two methionine residues (8 and 81) of glycophorin A. In urea Met-8 is readily oxidized. However, Met-81 can only be oxidized in trifluoroacetic acid containing hydrogen peroxide. Our results also give some insight into the reagent accessibility of different portions of the protein molecule and the general stability of this glycoprotein.  相似文献   

10.
克隆和表达结核分枝杆菌热休克蛋白16.3(Hsp16.3),建立纳米金免疫传感器检测结核病患者血清Hsp16.3抗体.PCR扩增hsp16.3基因,构建重组表达质粒pQE30-hsp16.3,表达和纯化Hsp16.3,Western blot分析其反应原性;晶种生长法制备金纳米棒并连接Hsp16.3,建立纳米金免疫传感...  相似文献   

11.
Small heat-shock proteins (sHsps) of various origins exist commonly as oligomers and exhibit chaperone-like activities in vitro. Hsp16.3, the sHsp from Mycobacterium tuberculosis, was previously shown to exist as a monodisperse nonamer in solution when analyzed by size-exclusion chromatography and electron cryomicroscropy. This study represents part of our effort to understand the chaperone mechanism of Hsp16.3, focusing on the role of the oligomeric status of the protein. Here, we present evidence to show that the Hsp16.3 nonamer dissociates at elevated temperatures, accompanied by a greatly enhanced chaperone-like activity. Moreover, the chaperone-like activity was increased dramatically when the nonameric structure of Hsp16.3 was disturbed by chemical cross-linking, which impeded the correct reassociation of Hsp16.3 nonamer. These suggest that the dissociation of the nonameric structure is a prerequisite for Hsp16.3 to bind to denaturing substrate proteins. On the other hand, our data obtained by using radiolabeled and non-radiolabeled proteins clearly demonstrated that subunit exchange occurs readily between the Hsp16.3 oligomers, even at a temperature as low as 4 degrees C. In light of all these observations, we propose that Hsp16.3, although it appears to be homogeneous when examined at room temperature, actually undertakes rapid dynamic dissociation/reassociation, with the equilibrium, and thus the chaperone-like activities, regulated mainly by the environmental temperature.  相似文献   

12.
The N-terminal regions, which are highly variable in small heat-shock proteins, were found to be structurally disordered in all the 24 subunits of Methanococcus jannaschii Hsp16.5 oligomer and half of the 12 subunits of wheat Hsp16.9 oligomer. The structural and functional roles of the corresponding region (potentially disordered) in Mycobacterium tuberculosis Hsp16.3, existing as nonamers, were investigated in this work. The data demonstrate that the mutant Hsp16.3 protein with 35 N-terminal residues removed (DeltaN35) existed as trimers/dimers rather than as nonamers, failing to bind the hydrophobic probe (1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid) and exhibiting no chaperone-like activity. Nevertheless, another mutant protein with the C-terminal extension (of nine residues) removed, although existing predominantly as dimers, exhibited efficient chaperone-like activity even at room temperatures, indicating that pre-existence as nonamers is not a prerequisite for its chaperone-like activity. Meanwhile, the mutant protein with both the N- and C-terminal ends removed fully exists as a dimer lacking any chaperone-like activity. Furthermore, the N-terminal region alone, either as a synthesized peptide or in fusion protein with glutathione S-transferase, was capable of interacting with denaturing proteins. These observations strongly suggest that the N-terminal region of Hsp16.3 is not only involved in self-oligomerization but also contains the critical site for substrate binding. Such a dual role for the N-terminal region would provide an effective mechanism for the small heat-shock protein to modulate its chaperone-like activity through oligomeric dissociation/reassociation. In addition, this study demonstrated that the wild-type protein was able to form heterononamers with DeltaN35 via subunit exchange at a subunit ratio of 2:1. This implies that the 35 N-terminal residues in three of the nine subunits in the wild-type nonamer are not needed for the assembly of nonamers from trimers and are thus probably structurally disordered.  相似文献   

13.
14.
During evolution of land plants, a specific motif occurred in the N-terminal domain of the chloroplast-localized small heat shock protein, Hsp21: a sequence with highly conserved methionines, which is predicted to form an amphipathic alpha-helix with the methionines situated along one side. The functional role of these conserved methionines is not understood. We have found previously that treatment, which causes methionine sulfoxidation in Hsp21, also leads to structural changes and loss of chaperone-like activity. Here, mutants of Arabidopsis thaliana Hsp21 protein were created by site-directed mutagenesis, whereby conserved methionines were substituted by oxidation-resistant leucines. Mutants lacking the only cysteine in Hsp21 were also created. Protein analyses by nondenaturing electrophoresis, size exclusion chromatography, and circular dichroism proved that sulfoxidation of the four highly conserved methionines (M49, M52, M55, and M59) is responsible for the oxidation-induced conformational changes in the Hsp21 oligomer. In contrast, the chaperone-like activity was not ultimately dependent on the methionines, because it was retained after methionine-to-leucine substitution. The functional role of the conserved methionines in Hsp21 may be to offer a possibility for redox control of chaperone-like activity and oligomeric structure dynamics.  相似文献   

15.
alpha 2-Macroglobulin (alpha 2M)-methylamine that had been allowed to react with cis-dichlorodiammineplatinum(II) (cis-DDP) bound with greatly reduced affinity to specific alpha 2M receptors, as determined by macrophage binding studies in vitro and plasma-clearance experiments in vivo. Subsequent reaction with diethyl dithiocarbamate completely restored receptor recognition function. The optimal effect was obtained when the diethyl dithiocarbamate concentration was twice the total platinum concentration. alpha 2M-methylamine that was allowed to react with H2O2 competed less effectively for specific cell-surface binding sites, as demonstrated by studies both in vivo and in vitro. The apparent dissociation constant was increased nearly 7-fold by a 15 min exposure to H2O2. alpha 2M-methylamine was affected significantly less by the H2O2 exposure after pretreatment with cis-DDP. Amino acid analysis indicated that H2O2 treatment of alpha 2M modified 19 of the 25 methionine residues per alpha 2M subunit. Pretreatment with cis-DDP protected two to four of these methionine residues. The only other residue altered by H2O2 treatment of alpha 2M was histidine. A net decrease of two histidine residues per subunit was observed, but cis-DDP pretreatment did not alter this result. In order to rule out the slight possibility that histidine modification might account for the observed H2O2-induced loss in receptor recognition, diethyl pyrocarbonate was employed as a histidine-modifying reagent. This treatment modified 53 histidine residues in both native and fast-form alpha 2M. Fast-form alpha 2M was still recognized by the alpha 2M receptor, as determined by studies both in vivo and in vitro; however, a fraction of the modified protein now cleared via the acyl-low-density-lipoprotein receptor as well. Reaction of diethyl pyrocarbonate-treated alpha 2M with hydroxylamine reversed derivatization of 43 of the 53 histidine residues. Moreover, this treatment also resulted in an alpha 2M fast-form preparation that was recognized only by the alpha 2M receptor. It is concluded that cis-DDP and H2O2 modify a critical methionine residue in the primary sequence of the alpha 2M-receptor recognition site.  相似文献   

16.
Hsp16.3, the alpha-crystallin-related small heat shock protein of Mycobacterium tuberculosis that is maximally expressed during the stationary phase and is a major membrane protein, has been reported to form specific trimer-of-trimers structure and to act as an effective molecular chaperone (Chang Z et al., 1996, J. Biol Chem 271:7218-7223). However, little is known about its action mechanism. In this study, Hsp16.3 conformational intermediates with dramatically increased chaperone activities were detected after treatment with very low concentrations of guanidine hydrochloride (0.05 M), urea (0.3 M), or mild heating (30 degrees C). The intermediates showed a significant increase in their capacity to bind the hydrophobic probe 1-anilino-8-naphthalene sulfonate (ANS), indicating an increased exposure of hydrophobic surfaces. Interestingly, the greatest chaperone activities of Hsp16.3 were observed in the presence of 0.3 M guanidine HCl or when heated to 35 degrees C. CD spectroscopy studies revealed no significant changes in protein secondary and tertiary structures at these mild treatments. Our in vitro studies also indicate that long-time-heated Hsp16.3, heated even to temperatures as high as 85 degrees C, has almost the same, if not a slightly greater, chaperone activities as the native protein when cooled to room temperature and its secondary structures also almost recovered. Together, these results suggest that Hsp16.3 modulates its chaperone activity by exposing hydrophobic surfaces and that the protein structure is highly stable and flexible, thus highly adapted for its function.  相似文献   

17.
Heat shock proteins counteract heat and oxidative stress. In chloroplasts, a small heat shock protein (Hsp21) contains a set of conserved methionines, which date back to early in the emergence of terrestrial plants. Methionines M49, M52, M55, M59, M62, M67 are located on one side of an amphipathic helix, which may fold back over two other conserved methionines (M97 and M101), to form a binding groove lined with methionines, for sequence-independent recognition of peptides with an overall hydrophobic character. The sHsps protect other proteins from aggregation by binding to their hydrophobic surfaces, which become exposed under stress. Data are presented showing that keeping the conserved methionines in Hsp21 in a reduced form is a prerequisite to maintain such binding. The chloroplast generates reactive oxygen species under both stress and unstressed conditions, but this organelle is also a highly reducing cellular compartment. Chloroplasts contain a specialized isoform of the enzyme, peptide methionine sulfoxide reductase, the expression of which is light-induced. Recombinant proteins were used to measure that this reductase can restore Hsp21 methionines after sulfoxidation. This paper also describes how methionine sulfoxidation-reduction can be directly assessed by mass spectrometry, how methionine-to-leucine substitution affects Hsp21, and discusses the possible role for an Hsp21 methionine sulfoxidation-reduction cycle in quenching reactive oxygen species.  相似文献   

18.
Small heat shock proteins (sHSPs), as one important subclass of molecular chaperones, are able to specifically bind to denatured substrate proteins rather than to native proteins, of which their substrate-binding sites are far from clear. Our previous study showed an overlapping nature of the sites for both hydrophobic probe 1,1'-Bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding and substrate binding in Mycobacterium tuberculosis Hsp16.3 [X. Fu, H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, Z. Chang, A dual role for the N-terminal region of M. tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins, J. Biol. Chem. 280 (2005) 6337-6348]. In this work, two bis-ANS binding sites in Hsp16.3 were identified by a combined use of reverse phase HPLC, mass spectroscopy and N-terminal protein sequencing. One site is in the N-terminal region and the other one in the N-terminus of alpha-crystallin domain, both of which are similar to those identified so far in sHSPs. However, accumulating data suggest that these two sites differentially function in binding substrate proteins. With regard to this difference, we proposed a two-step mechanism by which Hsp16.3 binds substrate proteins, i.e., substrate proteins are recognized and initially captured by the N-terminal region that is exposed in the dissociated Hsp16.3 oligomers, and then the captured substrate proteins are further stabilized in the complex by the subsequent binding of the N-terminus of alpha-crystallin domain.  相似文献   

19.
Mycobacterium tuberculosis (Mtb) is capable of surviving in dormancy before developing to tuberculosis (TB). One of the major challenges of TB management is the identification of patients, making TB diagnosis critical for disease management. This study focuses on the 16 kDa heat shock protein (HSP16.3; a potential biomarker for latent TB infection) that is expressed during the latent phase of Mtb growth. In order to explore the dynamics and interactions of HSP16.3, the 3-D structure of HSP16.3 was built via comparative modelling. The predicted structure shows a predominantly beta-sheet dodecamer with alpha-helical folds at its N-terminal. A known protein-hydrophobic probe (1,1′-Bi(4-anilino)naphthalene-5,5′-disulfonic acid; bisANS) was docked to the HSP16.3 model. Interacting residues predicted from docking and MD simulations are in good accordance with experimental data reported in the literature. MMPBSA calculation from MD simulation also showed favourable binding free energy of ?29.90 kcal/mol, driven mainly by van der waals and non-polar solvation energies. The statistical evaluation and results from the computational study on HSP16.3 indicate the reliability of the built model, which is potentially useful for further structural studies of HSP16.3 for latent TB diagnostics.  相似文献   

20.
Previous studies suggest that the number of proteins containing covalently bound biotin is larger than previously thought. Here, we report the identity of some of these proteins. Using mass spectrometry, we discovered 108 novel biotinylation sites in the human embryonic kidney HEK293 cell proteome; members of the heat shock protein (HSP) superfamily were overrepresented among the novel biotinylated proteins. About half of the biotinylated proteins also displayed various degrees of methionine oxidation, which is known to play an important role in the defense against reactive oxygen species; for biotinylated HSPs, the percent of methionine sulfoxidation approached 100%. Protein structure analysis suggests that methionine sulfoxides localize in close physical proximity to the biotinylated lysines on the protein surface. Mass spectrometric analysis revealed that between one and five of the methionine residues in the C-terminal KEEKDPGMGAMGGMGGGMGGGMF motif are oxidized in HSP60. The likelihood of methionine sulfoxidation is higher if one of the adjacent lysine residues is biotinylated. Knockdown of HSP60 caused a 60% increase in the level of reactive oxygen species in fibroblasts cultured in biotin-sufficient medium. When HEK293 cells were transferred from biotin-sufficient medium to biotin-free medium, the level of reactive oxygen species increased by >9 times compared with baseline controls and a time-response relationship was evident. High levels of methionine sulfoxidation coincided with cell cycle arrest in the G0/G1 and S phases in biotin-depleted cells. We conclude that biotinylation of lysines synergizes with sulfoxidation of methionines in heat shock proteins such as HSP60 in the defense against reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号