首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.  相似文献   

4.
Two extragenic suppressors which allow temperature-sensitive htrA mutant Escherichia coli bacteria to grow at 42 degrees C and simultaneously acquire a cold-sensitive phenotype at 30 degrees C were isolated. The cold-sensitive phenotype exhibited by one of the mutants was used to clone the corresponding wild-type copy of the suppressor gene. This was done through complementation with a mini-mu plasmid E. coli DNA library, by selection for colonies which were no longer cold sensitive, at 30 degrees C. The cloned suppressor gene was shown to complement the cold-sensitive phenotype of both suppressor mutations. It was mapped to 68 min on the E. coli chromosome through hybridization to the Kohara library of overlapping lambda transducing bacteriophages, which covers the entire E. coli chromosome. The complementing gene was further subcloned on an 830-base-pair (bp) DNA fragment. DNA sequencing revealed the presence of an open reading frame (ORF) of 333 bp which could encode a protein of 12,359 Mr. Subcloning of various DNA fragments from within this 830-bp DNA fragment suggests that this ORF is most likely responsible for suppression of the cold-sensitive phenotype of the htrA suppressor bacteria. By using a T7 polymerase system to overproduce plasmid-encoded proteins, a protein of approximately 12,000 Mr was produced by this cloned DNA fragment. This ORF defines a previously undiscovered gene in E. coli, called sohA (suppressor of htrA).  相似文献   

5.
The genetic control of DNA supercoiling in Salmonella typhimurium   总被引:33,自引:3,他引:30       下载免费PDF全文
We have elucidated the genetic control of DNA supercoiling in Salmonella typhimurium. The level of superhelix density is controlled by two classes of genes. The only member of the first class is topA, the structural gene for topoisomerase I. The second class, tos, (topoisomerase one suppressor) consists of at least two genes, one of which is linked to gyrA, the structural gene for the topoisomerase subunit of DNA gyrase. Deletions of topA result in oversupercoiling of plasmid DNA. These mutations do not require the acquisition of second-site compensatory mutations to allow cell growth, in contrast to the situation in Escherichia coli. However, tos mutations, unlinked to topA, have been isolated which reduce plasmid superhelix density. We conclude that the level of DNA supercoiling in S. typhimurium is a dynamic balance between the effects of the gene products of topA (relaxation) and tos (supercoiling) which act independently of each other. Using a variety of combinations of these mutations we have constructed a series of isogenic strains, each of which has a different but precisely defined level of plasmid supercoiling; the series as a whole provides a wide range of supercoiling both above and below the wild-type level.  相似文献   

6.
We show that DNA topoisomerase II (topo II) is continuously required for mitotic chromosome changes in Schizosaccharomyces pombe. We constructed cold-sensitive (cs) or temperature-sensitive (ts) strains mutated in the genes coding for topo II (top2) and beta-tubulin (nda3). The ATP-dependent activity of the top2cs gene product is cs in vitro. The cloned top2cs gene sequence predicts an amino acid substitution. A cs top2-cs nda3 double mutant at 20 degrees C shows long, entangled chromosomes, which condense and separate upon the shift to permissive temperatures. If spindle formation is prevented at permissive temperatures, the chromosomes condense but do not separate. Thus topo II is required for final chromosome condensation; moreover, pulse-shift experiments show that topo II is required for chromatid disjuction. Experiments with ts top2-cs nda3 cells show that topo II is also required for chromosome separation in anaphase: inactivation of topo II and activation of beta-tubulin allow normal spindle formation but result in "streaked" chromosomes.  相似文献   

7.
Gene 2.5 of bacteriophage T7 encodes a ssDNA binding protein (gp2.5) essential for DNA replication. The C-terminal phenylalanine of gp2.5 is critical for function and mutations in that position are dominant lethal. In order to identify gp2.5 interactions we designed a screen for suppressors of gp2.5 lacking the C-terminal phenylalanine. Screening for suppressors of dominant lethal mutations of essential genes is challenging as the phenotype prevents propagation. We select for phage encoding a dominant lethal version of gene 2.5, whose viability is recovered via second-site suppressor mutation(s). Functional gp2.5 is expressed in trans for propagation of the unviable phage and allows suppression to occur via natural selection. The isolated intragenic suppressors support the critical role of the C-terminal phenylalanine. Extragenic suppressor mutations occur in several genes encoding enzymes of DNA metabolism. We have focused on the suppressor mutations in gene 5 encoding the T7 DNA polymerase (gp5) as the gp5/gp2.5 interaction is well documented. The suppressor mutations in gene 5 are necessary and sufficient to suppress the lethal phenotype of gp2.5 lacking the C-terminal phenylalanine. The affected residues map in proximity to aromatic residues and to residues in contact with DNA in the crystal structure of T7 DNA polymerase-thioredoxin.  相似文献   

8.
Summary We have isolated large numbers of conditionally lethal -tubulin mutations to provide raw material for analyzing the structure and function of tubulin and of microtubules. We have isolated such mutations as intragenic suppressors of benA33, a heat-sensitive (hs-) -tubulin mutation of Aspergillus nidulans. Among over 2,600 revertants isolated, 126 were cold-sensitive (cs-). In 41 of 78 cs- revertants analyzed, cold sensitivity and reversion from hs- to hs+ were due to mutations linked to benA33. In three cases reversion was due to mutations closely linked to benA33 but cold sensitivity was due to a coincidental mutation unlinked to benA33. In the remaining 34 cases reversion was due to mutations unlinked to benA33. Thirty-three of the revertants in which cold sensitivity and reversion were linked to benA33 were sufficiently cold-sensitive to allow us to select for rare recombinants between benA33 and putative suppressors in a revertant x wild-type (wt) cross. We found only one recombinant among 1,000 or more viable progeny from crosses of each of these revertants with a wt strain. Reversion is thus due to a back mutation or very closely linked suppressor in each case. We have analyzed 17 of these 33 revertants with greater precision and have found that, in each case, reversion is due to a suppressor mutation that maps to the right of benA33. The recombination frequencies between benA33 and the suppressors are very low (less than 1.2×10-4) in all cases. Five of these 33 revertants have been examined microscopically and in each of them nuclear division and nuclear migration are inhibited at a restrictive temperature. We conclude that at least some and perhaps all of these revertants carry intragenic suppressors of benA33 that, in combination with benA33, cause cold sensitivity by inhibiting the functioning of microtubules at low temperatures. Of the 17 suppressors mapped, 11 map to two clusters. These clusters are likely to define regions particularly important to the functioning of the -tubulin molecule.  相似文献   

9.
Mammalian cells express two genetically distinct isoforms of DNA topoisomerase II, designated topoisomerase IIalphaand topoisomerase IIbeta. We have recently shown that mouse topoisomerase IIalpha can substitute for the yeast topoisomerase II enzyme and complement yeast top2 mutations. This functional complementation allowed functional analysis of the C-terminal domain (CTD) of mammalian topoisomerase II, where the amino acid sequences are divergent and species-specific, in contrast to the highly conserved N-terminal and central domains. Several C-terminal deletion mutants of mouse topoisomerase IIalpha were constructed and expressed in yeast top2 cells. We found that the CTD of topoisomerase IIalphais dispensable for enzymatic activity in vitro but is required for nuclear localization in vivo. Interestingly, the CTD of topoisomerase IIbetawas also able to function as a signal for nuclear targeting. We therefore examined whether the CTD alone is sufficient for nuclear localization in vivo . The C-terminal region was fused to GFP (green fluorescent protein) and expressed under the GAL1 promoter in yeast cells. As expected, GFP signal was exclusively detected in the nucleus, irrespective of the CTD derived from either topoisomerase IIalphaor IIbeta. Surprisingly, when the upstream sequence of each CTD was added nuclear localization of the GFP signal was found to be cell cycle dependent: topoisomerase IIalpha-GFP was seen in the mitotic nucleus but was absent from the interphase nucleus, while topoisomerase IIbeta-GFP was detected predominantly in the interphase nucleus and less in the mitotic nucleus. Our results suggest that the catalytically dispensable CTD of topoisomerase II is sufficient as a signal for nuclear localization and that yeast cells can distinguish between the two isoforms of mammalian topoisomerase II, localizing each protein properly.  相似文献   

10.
Using a replica plating microwell method, three Chinese hamster V79-derived cell lines, designated ETO1, ETO2 and ETO3, which exhibit hypersensitivity to the non-intercalating topoisomerase II inhibitor etoposide have been isolated. Mutant lines ETO2 and ETO3 are cross-sensitive to the topoisomerase II inhibitors adriamycin and streptonigrin; however, neither mutant is sensitive to the topoisomerase I inhibitor camptothecin, the bifunctional alkylating agent mitomycin C, nor hydrogen peroxide. In contrast, ETO1 is cross-sensitive to camptothecin but displays only slight sensitivity to adriamycin, streptonigrin and hydrogen peroxide, and is not sensitive to mitomycin C. It has been established through extensive cell fusion studies that all three mutants are genetically distinct, and that ETO2 and ETO3 genetically complement all other known etoposide-sensitive Chinese hamster cell mutants (i.e., irs1, XR-1, xrs1, V3, BLM2, ADR1, ADR3, ADR4 and ADR5) thus defining two new complementation groups of etoposide sensitive mutants. Interestingly, the hybrids created by the fusion irs2TOR (thioguanine and ouabain resistant)xETO1 and the reciprocal cross ETO1TORxirs2 both exhibited a response to camptothecin intermediate with respect to V79 and ETO1. It has been hypothesised that this partial complementation may be the result of intragenic complementation and that both ETO1 and irs2 result from mutations in the gene XRCC8. This study indicates that cellular responses to topoisomerase II inhibitors are complex and hypersensitivity may result from mutations in many different genes.  相似文献   

11.
R. A. Britton  J. R. Lupski 《Genetics》1997,145(4):867-875
The dnaG gene of Escherichia coli encodes the primase protein, which synthesizes a short pRNA that is essential for the initiation of both leading and lagging strand DNA synthesis. Two temperature-sensitive mutations in the 3'' end of the dnaG gene, dnaG2903 and parB, cause a defect in chromosome partitioning at the nonpermissive temperature 42°. We have characterized 24 cold-sensitive suppressor mutations of these two dnaG alleles. By genetic mapping and complementation, five different classes of suppressors have been assigned: sdgC, sdgD, sdgE, sdgG and sdgH. The genes responsible for suppression in four of the five classes have been determined. Four of the sdgC suppressor alleles are complemented by the dnaE gene, which encodes the enzymatic subunit of DNA polymerase III. The sdgE class are mutations in era, an essential GTPase of unknown function. The sdgG suppressor is likely a mutation in one of three genes: ubiC, ubiA or yjbI. The sdgH class affects rpsF, which encodes the ribosomal protein S6. Possible mechanisms of suppression by these different classes are discussed.  相似文献   

12.
C. L. Holt  G. S. May 《Genetics》1996,142(3):777-787
We previously identified a gene, bimD, that functions in chromosome segregation and contains sequences suggesting that it may be a DNA-binding protein. Two conditionally lethal mutations in bimD arrest with aberrant mitotic spindles at restrictive temperature. These spindles have one-third the normal number of microtubules, and the chromosomes never attach to the remaining microtubules. For this reason, we hypothesized that BIMD functioned in chromosome segregation, possibly as a component of the kinetochore. To identify other components that function with bimD, we conducted a screen for extragenic suppressors of the bimD5 and bimD6 mutations. We have isolated seven cold-sensitive extragenic suppressors of bimD6 heat sensitivity that represent three or possibly four separate sud genes. We have cloned one of the suppressor genes by complementation of the cold-sensitive phenotype of the sudA3 mutation. SUDA belongs to the DA-box protein family. DA-box proteins have been shown to function in chromosome structure and segregation. Thus bimD and the sud genes cooperatively function in chromosome segregation in Aspergillus nidulans.  相似文献   

13.
T Uemura  K Morikawa    M Yanagida 《The EMBO journal》1986,5(9):2355-2361
We have determined the complete nucleotide sequence of a 5.3-kb long genomic DNA fragment of the fission yeast Schizosaccharomyces pombe that encodes DNA topoisomerase II. It contains a 4293 bp long single open reading frame. The predicted polypeptide has 1431 residues (mol. wt 162,000) and shows three characteristic domains; the large C-terminal region, which consists of alternating acidic-basic stretches and might be a chromatin-binding domain, the NH2 half domain homologous to the ATP-binding gyrB subunit of bacterial gyrase and the central-to-latter part which is homologous to the NH2 domain of the catalytic gyrA subunit, suggesting a possible evolutionary consequence of the gene fusion of the bacterial gyrase subunits into the eucaryotic DNA topoisomerase II gene. We have found that the cloned fission yeast TOP2 gene can complement the budding yeast top2 mutation, although the fission yeast TOP2 protein sequence is only 50% homologous to the recently determined sequence of budding yeast (J.C. Wang, personal communication). Conversely, the budding yeast TOP2 gene can complement the fission yeast top2 mutations, indicating that their DNA topoisomerase II genes are functionally exchangeable.  相似文献   

14.
B. A. Fane  M. Hayashi 《Genetics》1991,128(4):663-671
This study describes the isolation of second-site suppressors which correct for the defects associated with cold-sensitive (cs) prohead accessory proteins of bacteriophage phi X174. Five phenotypically different suppressors were isolated. Three of these suppressors confer novel temperature-sensitive (ts) phenotypes. They were unable to complement a ts mutation in gene F which encodes the major coat protein of the phage. All five suppressor mutations confer nucleotide changes in the gene F DNA sequence. These changes define four amino acid sites in the gene F protein. Three suppressor mutations placed into an otherwise wild-type background display a cold resistant phenotype in liquid culture infections when compared to a wild-type phi X174 control.  相似文献   

15.
D Rose  W Thomas  C Holm 《Cell》1990,60(6):1009-1017
To understand better the similarities and differences between meiosis and mitosis, we examined the meiotic role of DNA topoisomerase II, an enzyme that is required mitotically to disentangle sister chromatids at the time of chromosome segregation. In meiosis, we found that topoisomerase II is required only at the time of nuclear division. When cold-sensitive top2 mutants are induced to sporulate at the restrictive temperature, they undergo premeiotic DNA synthesis and commitment to meiotic levels of recombination but fail to complete the first meiotic nuclear division. The introduction of a mutation blocking recombination relieves the requirement for topoisomerase II in meiosis I. These results suggest that topoisomerase II is required at the time of chromosome segregation in meiosis I for the resolution of recombined chromosomes.  相似文献   

16.
Myosin mutants and their suppressors can provide information about conformational states of the myosin motor and their biochemical properties. Appropriate mutations can give rise to motors that arrest or overoccupy otherwise inaccessible states in the motor cycle. Intragenic (in the same gene) suppressor mutations that counteract mutations of known properties represent "fixes" or counters to the defect of the starting mutation and thus contain information about driving transitions or stabilizing states of the motor. Due to its variety of myosin-dependent phenotypes, Dictyostelium is a powerful tool for the identification of conditional mutants as well as selection of large numbers of intragenic revertants of a mutant of interest. Techniques are presented that allow isolation and identification of cold-sensitive myosin mutants in Dictyostelium as well as facile selection of revertants and identification of their suppressing mutation.  相似文献   

17.
Partial suppressors of a mitochondrially inherited mutation, [cs-67], conferring cold-sensitivity at 20 degrees C were identified. These mapped at one mitochondrial and four unlinked nuclear loci. Most suppressors partially restored the cytochrome aa3 deficiency of the cold-sensitive strain at 20 degrees C. Strains carrying two or more suppressors and [cs-67] showed considerably impaired growth. This effect was temperature-dependent, being more severe at 37 degrees C, and was not expressed in the presence of the [cs-67+] allele. The cytochrome oxidase activity of one of these strains was no more heat-sensitive than that of the wild-type implying that these mutations did not directly modify cytochrome oxidase. The wild-type strain grown in the presence of chloramphenicol and the cold-sensitive strain grown at 20 degrees C had similar cytochrome spectra and mitochondrial membrane protein profiles on sodium dodecyl sulphate gradient acrylamide gels. [cs-67] conferred pleiotropically a low level of resistance to paramomycin at 37 degrees C. It is suggested that [cs-67] and the suppressors act at the level of the mitochondrial ribosome.  相似文献   

18.
Numerous antitumor and antibacterial agents inhibit type II DNA topoisomerases, yielding, in each case, a complex of enzyme covalently bound to cleaved DNA. We are investigating the mechanism of inhibitor action by using the type II DNA topoisomerase of bacteriophage T4 as a model. The T4 topoisomerase is the target of antitumor agent 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) in T4-infected Escherichia coli. Two m-AMSA-resistant phage strains were previously isolated, one with a point mutation in topoisomerase subunit gene 39 and the other with a point mutation in topoisomerase subunit gene 52. We report here that the wild-type T4 topoisomerase is inhibited by six additional antitumor agents that also inhibit the mammalian type II topoisomerase: ellipticine, 9-OH-ellipticine, 2-me-9-OH-ellipticinium acetate, mitoxantrone diacetate, teniposide, and etoposide. Further, one or both of the m-AMSA-resistance mutations alters the enzyme sensitivity to each of these agents, conferring either cross-resistance or enhanced sensitivity. Finally, the gene 39 mutation confers on T4 topoisomerase a DNA gyrase-like sensitivity to the gyrase inhibitor oxolinic acid, thus establishing a direct link between the mechanism of action of the anti-bacterial quinolones and that of the antitumor agents. These results strongly suggest that diverse inhibitors of type II topoisomerases share a common binding site and a common mechanism of action, both of which are apparently conserved in the evolution of the type II DNA topoisomerases. Alterations in DNA cleavage site specificity caused by either the inhibitors or the m-AMSA-resistance mutations favor the proposal that the inhibitor binding site is composed of both protein and DNA.  相似文献   

19.
We have isolated mutants defective in DNA topoisomerases and an endonuclease from the fission yeast Schizosaccharomyces pombe by screening individual extracts of mutagenized cells. Two type I topoisomerase mutants (top1) and three endonuclease mutants (end1) were all viable. The double mutant top1 end1 was also viable and, in its extract, Mg2+- and ATP- dependent type II activity could be detected. Three temperature-sensitive (ts-) mutants having heat-sensitive (hs-) type II enzymes were isolated, and the ts- marker cosegregated with the hs- type II activity. All the ts- mutations fell in one gene (top2) tightly linked to leul in chromosome II. The nuclear division of single top2 mutants was blocked at the restrictive temperature, but the formation of a septum was not inhibited so that the nucleus was cut across with the cell plate. In contrast, the double top1 top2 mutants were rapidly arrested at various stages of the cell cycle, showing a strikingly altered nuclear chromatin region. The type II topoisomerase may have an essential role in the compaction and/or segregation of chromosomes during the nuclear division but also complement the defect of the type I enzyme whose major function is the maintenance of chromatin organization throughout the cell cycle.  相似文献   

20.
A. Gimelfarb  J. H. Willis 《Genetics》1994,138(2):343-352
IS10 transposase mediates excision and integration reactions in Tn10/IS10 transposition. Mutations in IS10 transposase that specifically block integration have previously been identified; however, the mechanism by which these mutations block integration has not been established. One approach to defining the basis of this block is to identify ways in which the original defect can be corrected. The approach we have taken toward this end has been to isolate and characterize intragenic second site suppressors to two different integration-defective mutants. Of the second site suppressors identified, one, CY134, is of particular interest for two reasons. First, it suppresses at least seven different mutations that confer an integration-defective phenotype. Interestingly, these mutations map in two separate segments of transposase, designated patch I and patch II. Second, CY134 on its own has previously been shown to relax the target DNA sequence requirements for Tn10 integration. We provide evidence that suppression by CY134 is not simply a consequence of this mutation conferring a general ``transposition up' phenotype, but rather is due to correcting the original defect. Possible mechanisms of suppression for both CY134 and other second site suppressors are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号