首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Late Pleistocene-Holocene pollen, phosphorus, and charcoal record was reconstructed from a peatland in southern Jiangxi Province in southern China. The area today has a mountainous and rolling landscape with villages, small towns, and agriculture dominated by rice paddies, vegetable, and fruit gardens, as well as areas of secondary forest and pine re-afforestation. The record opens before 14 300 yr BP, with Alnus woodland dominating the wetland areas and with an open Quercus woodland on the surrounding slopes. The forest area becomes more complex from approximately 12 800 yr BP and further from 9 000 yr BP. At approximately 6 000 yr BP, there is evidence of clearing and, by 4 500-4 000 yr BP, a complete collapse in the wetland Alnus and terrestrial forest as the low-lying areas are converted to rice production. For much of the record, the occurrence of fire around the site was low, although there is evidence of regional fires. Fire was used as a tool in clearing and then used in the annual cycles of stubble burning after rice harvest. Nutrient levels, as reflected by total phosphorus in the sediment, seem to be closely related to forest changes and high values in the surface layers probably result from land-management techniques associated with agriculture. Therefore, human impact greatly altered forest cover, fire frequency, and nutrient dynamics; this has been evident for approximately 6 000 yr BP and then intensities towards the present day.  相似文献   

2.
Pollen records of Holocene sediment cores from the Costa Rican Cordillera de Talamanca (La Chonta bog, 2310 m and La Trinidad bog, 2700 m) show the postglacial development of the montane oak forest zone from ca. 9500 to 1500 yr BP. During the early Holocene (ca. 9500–700 yr BP), alder vegetation covered the La Chonta and La Trinidad bogs and their adjacent hills. The upper forest line is inferred to be at 2800–3000 m elevation. A Podocarpus-Quercus forest characterised the middle Holocene (ca. 7000–4500 yr BP). The upper forest line is located at >3000 m reaching the present-day altitudinal distribution. A Quercus forest characterised the late Holocene (ca. 4500–1500 yr BP). Compared to modern conditions, the early Holocene has similar average temperatures, but the moisture level was probably higher. Pollen evidence for the late Holocene indicates drier environmental conditions than today. In order to improve the paleoecological interpretation, we described the local vegetation and used moss samples as pollen traps at both montane bogs along strong soil moisture gradients.The Netherlands Centre for Geo-ecological Research, ICG  相似文献   

3.
The isolated habitat of the ervené Blato bog (South Bohemia, Czech Republic) and its relict insect fauna have been the subject of long-term monitoring. The species composition and abundance of Lepidoptera (light traps) and Coleoptera (pitfall traps) were monitored for 4 years (1994–1997) simultaneously on two sites – in the edaphic climax pine forest and in wetland successional habitats. The method of statistical evaluation by RDA and CCA ordination, representing the habitat preference of species of Coleoptera (Carabidae only) and Lepidoptera (all nocturnal phototactic taxa) between the edaphic climax forest and succession stages, was used. All categories of the peatland taxa (tyrphobiontic, tyrphophilous and tyrphoneutral species) were analysed. Ten highly stenotopic tyrphobiontic species and 23 tyrphophilous species of Lepidoptera (out of 487) were most characteristic of the bog habitat. Only two tyrphophilous carabid species (out of 20) were characteristic of the bog. The most important relict species (tyrphobionts) of Lepidoptera are most diverse and abundant within the successional habitats and in the open wet forest. The relict fauna of the closed climax pine forest is much less diverse and composed mostly of abundant tyrphophilous and tyrphoneutral forest species. Preservation or restoration of sufficiently constant hydrological conditions, which prevents formation of the closed forest, is the basic management for habitat conservation of all relict tyrphobiontic species of the ervené Blato bog and similar peat land habitat islands. The peat bog is a unified complex system of specific diverse and relict taxa. The most specific taxa are tyrphobiontic Lepidoptera, but a number of other vulnerable tyrphophilous and tyrphoneutral insects are associated with the peat bog as well.  相似文献   

4.
Pollen analysis of a 3.4 m core from residual fenland at the eastern end of Kurnell Peninsula shows that woodland cover of Eucalyptus spp., Angophora costata, Banksia integrifolia/B. serrata and Casuarina spp. suffered losses about 5000 BP when a nearby coastal protobarrier was destabilised by rising sea level, while rapidly-formed fen peat replaced slowly formed O2-depleted, algal and FeS-rich fine detritus gyttja. Fire frequency was low up to this time.

Woodland partly recovered over a 2000 yr period despite heavier or more frequent firing coincident with the entry of hunter-gathering aboriginal (Pre-Bondaian) people. The peatland, formerly sedge/Triglochin, became dominated by marsh ferns between 4000 and 2000 BP; these were largely replaced during a major change to a more acid peat, with an expansion of Sphagnum bog elements, associated with acidiphilous diatoms.

Minor destabilisation of local duneland ca. 1700 BP brought fine sand into the fen basin. Dryland plant cover increased after 1700 BP but mainly dominated locally by a more seral Monotoca/Leptospermum scrub. Bog has reverted to Baumea rubiginosa-Triglochin procera fen with few diatoms, possibly due to recent salt-spray access. This and the more seral vegetation may be linked to higher population density or greater continuity of tenure of later (Bondaian) aboriginal peoples, post-2000 BP.  相似文献   


5.
Hydrological disturbances can alter the structure and function of ecosystems by changing plant species composition over time. Peatlands in the northern hemisphere are particularly sensitive to global change drivers related to soil water availability, such as drought and drainage, because of important ecohydrological feedbacks between species composition and water table position. Here, we examined the plant community structure and environmental drivers of species distributions over two growing seasons along a bog – margin gradient, pre- and post-disturbance by beaver activity. Pond drainage resulted in seasonal average water table depth 8–24 cm lower in the second season. Five plant communities corresponded to changes in water table depth and acidity: bog, poor fen, meadow, mudflat and pond. Plant cover increased in meadow and mudflat communities, decreased in the pond community and did not differ between years in bog and poor fen communities. Changes in species abundance between years showed signs of alternate successional pathways: one that favors Sphagnum moss and bog community expansion and another pathway that favors meadow and mudflat expansion. This study highlights the non-linear successional trajectory of plant communities with changes in water table depth, which has implications for land management goals that aim to conserve the ecological integrity of peatland ecosystems.  相似文献   

6.
Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13C, δ15N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to −59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized.  相似文献   

7.
Succession has a strong influence on species diversity and composition of terrestrial ecosystems. Peat bogs are among them. They have a large area in Belarus compared to other Central European countries. While in several studies have analyzed the effects of succession on vegetation in peat bog ecosystems, the response of peatland insects to succession has not been investigated yet. To address this issue were sampled Auchenorrhyncha abundance and environmental parameters on the ancient and one of the largest natural peat bog along a successional gradient from the margin to the bog dome. The results provide evidence that succession of peat bogs has influence on planthoppers and leafhoppers abundance, diversity and species composition. Along the successional gradient from younger towards older successional stages an increase abundance of specialized peat bog species, chamebionts, oligophagous and monophagous was observed. On the contrary, the younger stages of natural peat bog succession offer favorable conditions to eurytopic, polyphagous and chortobiont planthoppers and leafhoppers. The highest abundance and species richness of Auchenorrhyncha were in the lagg zone followed by early stages of natural peat bog succession. The highest diversity was in the middle stages of succession. A determinant of Auchenorrhyncha diversity was the cover of ericaceous dwarf shrubs. Linear models shrub cover and number of plants species had a positive effect on planthoppers and leafhoppers diversity and a negative effect on their abundance. Amount of ericaceous dwarf shrubs within the peat bog could be as a measure of heterogeneity.  相似文献   

8.
李庆军  Lee  F.KLINGER 《Acta Botanica Sinica》2001,43(10):1065-1071
从群落水平和生态系统演替的角度对中国热带,亚热带和温带生态系统植物挥发性有机化合物(VOC)通量的研究表明,异戊二烯通量呈现出在生态系统演替的早期到中期阶段随着演替的的进行而升高,在先锋性灌木和乔木阶段达到高峰,然后又随着演替的发展而逐渐下降的演替格局,而其他VOC通量则有随着演替的进行而上升的趋势。生态系统不同演替阶段异戊二烯通量的变化可能与植物获取养分氮有关,根据植物VOC释放通量的生态演替格局,可以建立全球陆地生态系统的VOC模型,对大气化学过程中的VOC时空动态进行很好的模拟。  相似文献   

9.
Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regional NDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing of NDVI to track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition to NDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found that NDVI decreased with long‐term reductions in soil moisture at the APEX site, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasing NDVI with elevated temperature at the SPRUCE site, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at the SPRUCE site also led to increases in the LAI of the shrub layer. We found no strong effects of elevated CO2 on community composition. Our findings support recent studies suggesting that changes in NDVI observed from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.  相似文献   

10.
The relation between climatic conditions and type of peatland ecosystem in the different climate zones in Europe is discussed. Special attention is given to the hydrology of raised bogs in the sub-oceanic region. Possible effects of climatic change on such raised bog systems are discussed in terms of changes in water discharge, ground-water table, rate of peat accumulation, and flora and vegetation. It is concluded that future changes, as suggested by the more widely accepted scenarios for climatic change, will seriously disrupt the ecological functioning of these peatland ecosystems, and it is doubtful whether at least the most southerly examples of sub-oceanic raised bogs will at all survive. Finally, suggestions are given for future research on the impact of climatic change on peatland ecosystems.  相似文献   

11.
Despite being rich in later prehistoric and historic archaeology that includes megalithic monuments, Bronze age copper mines and medieval castles, the Mizen Peninsula, south-west Ireland, has revealed little about its stone age past. Evidence for a Mesolithic presence in SW Ireland is rare and, to date, all archaeological finds of this age in Co. Cork are further north and east of the Mizen Peninsula. However a recent palaeoecological study of pollen, non-pollen palynomorph, plant macrofossil and microscopic charcoal data from a peat bog located near Mount Gabriel has provided evidence for disturbances, characterised by fire disturbance of woodland and exploitation of wetlands, since ca. 8400 years b.p. Two working hypotheses are considered to explain these disturbances: human activity or natural agencies. If the human activity hypothesis is accepted, they represent the first possible evidence of a Mesolithic presence on the Mizen Peninsula.  相似文献   

12.
In this paper, we present the results of four pollen diagrams obtained from the northeastern coast of the Iberian Peninsula. These data, together with a set of 11 radiocarbon dates, allow us to make some suggestions about human activity in this area mainly during the last 6000 years. We have established four main stages of this activity. Phase I (7000–3000 B.P.) shows some sporadic human clearance without qualitative and/or quantitative changes inside the natural woodland, except for slight oscillations in AP values. These clearances are synchronous with Neolithic and Bronze Age settlements. Phase II (3000–1500/1300 B.P.) demonstrates a different human action on the landscape along the Catalan coast. Sampling sites located in rich agricultural plains and close to urban centres show continuous woodland clearance during the Iberian period and especially during Roman times. In contrast, at boring sites far from these towns, the irregular and sporadic woodland disturbances continue, although these become more common. Phase III (1500/1300–850 B.P.) shows further woodland clearance fires along the coast. Pollen, archaeological and historical evidence allow us to relate this to the introduction of grazing in the coastal area, connected with seasonal transhumance between the littoral and mountain regions. Phase IV (850–300/150 B.P.) is characterised by the final clearance of woodland and the development of olive farming. During this phase the agrarian Mediterranean landscape was definitively formed.  相似文献   

13.
Abstract. The primary-successional sere of a Hawaiian montane rain forest was inferred from an age sequence of eight closely located ‘a’ ā flows (clinker type lava); 8, 50, 140, ca. 300, ca. 400, ca. 1400, ca. 3000 and ca. 9000 yr, on a windward slope of Mauna Loa, Hawaii. All study sites (0.2 ha each) were at 1120 — 1250 m a.s.l. with 4000 mm mean annual rainfall. The 400-yr, 1400-yr, and 9000-yr flows had younger volcanic ash deposits, while the others were pure lava. Comparisons of tree size and foliar nutrients suggested that ash increased the availability of nitrogen, and subsequently standing biomass. An Unweighted Pair Group Cluster Analysis on the samples (flows) using quantitative vascular species composition revealed that clusters were correlated with age regardless of the substrate types (pure lava vs. ash), and an indirect ordination on the samples suggested that the sequence of sample scores along axis 1 was perfectly correlated with the age sequence. Although ash deposits increased biomass, they did not affect the sequence of the successional sere. Both pubescent and glabrous varieties of Metrosideros polymorpha (Myrtaceae) dominated upper canopy layers on all flows ≥ 50 yr and ≤ 1400 yr, but the pubescent variety was replaced by the glabrous on the flows ≥ 3000 yr. Lower layers were dominated initially by a matted fern, Dicranopteris linearis, up to 300 yr, and subsequently by tree ferns, Cibotium spp., to 9000 yr. The cover of Cibotium declined slightly after 3000 yr, while other native herb and shrub species increased. A ‘climax’ stage in the conventional sense was apparently not reached on the observed age gradient, because the sere changed continuously in biomass and species; this divergent successional phenomenon may be unique to Hawaii where the flora is naturally impoverished and disharmonic due to its geographic isolation in contrast to more diverse and harmonic floras in continents.  相似文献   

14.
We investigated a unique source of forest disturbance: gamma radiation. While the temporal patterns of ecological succession are well understood for the forests of eastern North America, this is not the case for massively irradiated forests. Our objective was to compare vascular plant community change after irradiation at the five vegetation zones described in 1962 by Woodwell at Brookhaven National Laboratory, Long Island, New York. No follow-up studies have been done since the gamma radiation experiments were terminated in 1978. Ecological successional theory (e.g., Bormann and Likens, 1994, Likens and Bormann, 1995) does not explain long-term forest recovery after radiation damage. Our null hypothesis was that 47 yr after initial gamma ray exposure, the sites would have recovered such that floristic composition would be the same as the pine-oak forest control. This hypothesis was rejected statistically. In 2007/2008, the five concentric zones of vegetation centered about the gamma source retained their floristic heterogeneity as measured by Jaccard coefficients.  相似文献   

15.
The pollen analysis of a sediment core from a peat bog (Rifugio Mondovi) at the mountain belt (1760 m) in the Ellero Valley (Italian Maritime Alps) shows the postglacial vegetation history. The sequence starts at 12,000 BP during a peak of pine pollen; this first phase shows a low representation of birch and the presence of Tilia. Younger Dryas is characterised by increasing percentages of Artemisia, showing the presence of deciduous Quercus, fir and beech. Elm appears at the beginning of the Holocene during the second pine peak (9800 BP). A 3000-year hiatus is present. Sedimentation resumes at 6000 BP in a Rhododendron fir-wood. The present timberline at 1500 m, at the limit of the beech wood, is a result of the decline of the fir-wood at 2600 BP, which allowed an expansion of beech. During this period, there was a continual increase in Gramineae and deciduous oak and the first occurrences of evergreen oak are observed. The development of larch occurs at 1800 BP, together with walnut, chestnut, cereals and vine.  相似文献   

16.
The Late Quaternary paleoenvironmental history from Pacific slopes of the western Andes is reconstructed by pollen analysis of 32 samples from two marine sediment cores from the Panama Basin, eastern equatorial Pacific: core ODP 677B (83°44.2200′ W, 1°12.1440′ N, 3473 m water depth) is 185 cm long and spans the last 39,410 years, core TR 163-38 (81.583° W, 1.337° N, 2200 m water depth) is 103 cm long and covers the last 17,380 years. Six ecological groups were established: mangrove, brackish and fresh water swamps, terra firma lowland forests, broad range taxa, Andean forests, and open vegetation. A good correspondence was found between the changes of these ecological groups in the two cores. The records evidence the continuous presence of all vegetation types during the last 39,410 years and specially the uninterrupted occurrence of tropical rain forest. They record a development from: (1) a cold and humid phase (39,410-28,120 yr cal BP) with moderately high sea levels, (2) the coldest and driest phase in the record (28,120-14,500 yr cal BP) accompanied by the lowest sea levels, (3) a transitional phase when sea level rose and humid conditions dominated, (4) a stage (11,300-5600 yr cal BP) of the highest sea levels and moisture conditions including a drier period ∼7000 yr BP, to (5) a final period (5600 yr cal BP-Present) when sea level reached its present height, humidity persisted, and indicators of disturbance expanded. Peaks in pollen and spore concentration, associated with high river discharge periods, indicate periods of higher precipitation around 33,500, 28,000 and 12,000-9000 yr cal BP. Although main vegetation responses seem to reflect rainfall and moisture variations, a good correspondence was found between δ18O values and percentages of Andean and lowland pollen, suggesting that vegetation also responded to tempearture changes.  相似文献   

17.
Abstract. Long-term (45-yr) basal area dynamics of dominant graminoid species were analyzed across three grazing intensity treatments (heavily grazed, moderately grazed and ungrazed) at the Texas A&M University Agricultural Research Station on the Edwards Plateau, Texas. Grazing intensity was identified as the primary influence on long-term variations in species composition. Periodic weather events, including a severe drought (1951–1956), had little direct influence on composition dynamics. However, the drought interacted with grazing intensity in the heavily grazed treatment to exacerbate directional changes caused by grazing intensity. Species response to grazing was individualistic and noisy. Three response groups were identified. Taller, more productive mid-grasses were most abundant under moderate or no grazing. Short grasses were most abundant under heavy grazing. Intermediate species were most abundant under moderate grazing and opportunistic to weather patterns. Graminoid diversity increased with the removal or reduction of grazing intensity. The moderately and ungrazed treatments appeared most resistant to short-term weather fluctuations, while the heavily grazed treatment demonstrated significant resilience when grazing intensity was reduced after over 110 yr of overgrazing. Identification of a ‘climax’ state is difficult. Significant directional change, which took nearly 20 yr, appears to continue in the ungrazed treatment after 45 yr of succession. The observed, relatively linear patterns of perennial grass composition within the herbaceous patches of this savanna were generally explained by traditional Clementsian succession. However, when dynamics of the herbaceous community are combined with the woody component of this savanna, the frequency and intensity of fire becomes more important. Across the landscape, successional changes follow several pathways. When vegetation change is influenced by several factors, a multi-scale model is necessary to demonstrate interactions and feedbacks and accurately describe successional patterns. Absence of fires, with or without grazing, leads ultimately to a Juniperus/Quercus woodland with grazing intensity primarily influencing the fuel load and hence fire intensity.  相似文献   

18.
Impact craters contain ecosystems that are often very different from the ecosystems that surround them. On Earth over 150 impact craters have been identified in a wide diversity of biomes. All natural events that can cause localized disruption of ecosystems have quite distinct patterns of rccovery. Impact events are unique in that they are the only extraterrestrial mechanism capable of disrupting an ecosystem locally in space and time. Thus, elucidating the chronological sequence of change at the sites of impacts is of ecological interest. In this synthetic review we use the existing literature, coupled with our own observations at the Haughton impact structure, Devon Island, Nunavut, Canada to consider the patterns of biological recovery at the site of impact craters and the ecological characteristics of impact craters. Three phases of recovery are suggested. The Phase of Thermal Biology, a phase associated with the localized, ephemeral thermal anomaly generated by an impact event. The Phase of Impact Succession and Climax, a phase marked by multiple primary and secondary succession events both in the aquatic realm (impact crater-lakes) and terrestrial realm (colonization of paleolacustrine deposits and impact-generated substrata) that are followed by periods of climax ecology. In the case of large-scale impact events (> 10(4) Mt), this latter phase may also be influenced by successional changes in the global environment. Finally, during the Phase of Ecological Assimilation, the disappearance of the surface geological expression of an impact structure results in a concomitant loss of ecological distinctiveness. In extreme cases, the impact structure is buried. Impact succession displays similarities and differences to succession following other agents of ecological disturbance, particularly volcanism.  相似文献   

19.
Three plots representing two stages of old-field succession and the climax were selected in each of three vegetation types in Oklahoma: oak-pine forest, post oak-blackjack oak forest, and tall grass prairie. Soil samples from the 0–15 and 45–60 cm levels were analyzed every other month for 1 yr for exchangeable ammonium nitrogen and for nitrate. On alternate months numbers of Nitrosomonas and Nitrobacter were determined in the 0–15 cm level. The amount of ammonium nitrogen was lowest in the first successional stage, intermediate in the second successional stage, and highest in the climax stand. This trend was remarkably consistent throughout all sampling periods, all vegetation types, and both sampling levels in the soil. The amount of nitrate was highest in the first successional stage, intermediate in the second successional stage, and lowest in the climax stand in both sampling levels, all vegetation types, and virtually all sampling periods. The numbers of nitrifiers were high in the first successional stage, generally, and decreased to a very low level in the climax. In fact, there was often no Nitrobacter in the climax stands. These results indicate that the nitrifiers are inhibited in the climax so that ammonium nitrogen is not oxidized to nitrate as readily in the climax as in the successional stages. Evidence from other geographic areas and vegetation types strongly supports this conclusion. This would certainly appear to be a logical trend in the evolution of ecosystems because of the increased conservation of nitrogen and energy. The ammonium ion is positively charged and is adsorbed on the negatively charged colloidal micelles, thus preventing leaching below the depth of rooting. On the other hand, nitrate ions are negatively charged, are repelled by the colloidal micelles in the soil, and thus readily leach below the depth of rooting or are washed away in surface drainage. There is growing evidence also that many plant species can use ammonium nitrogen as effectively or more so than nitrate nitrogen. If ammonium nitrogen is used directly, this eliminates four chemical steps because nitrogen which is oxidized to nitrite and then to nitrate must be reduced back to nitrite and then to ammonium nitrogen before it can react with keto-acids in the formation of amino acids. The two reduction reactions require considerable expenditure of energy.  相似文献   

20.
We reconstructed the Holocene developmental history of a kettle-hole peatland in the Tuchola Forest of Northern Poland, using pollen, testat amoebae and plant macrofossil indicators. Our aims were to determine the timing and pattern of autogenic succession and natural and anthropogenic influences on the peatland. Northern Poland is under mixed oceanic and continental climatic influences but has so far been less studied in a palaeoecological context than more oceanic regions of Europe. In the first terrestrial developmental phase of the mire, the testate amoebae-inferred depth to water table revealed two major dry shifts at ca. 9400 (end of lake phase) and ca. 7100 cal BP (a period of global cooling and dry shift in Western Europe). Conditions became wetter again in two steps at ca. 6700 and ca. 5800 BP after a dry event at ca. 6100 BP. The timing of the wet shift at 5800 BP corresponds to wet periods in Western Europe. Peat accumulation rates were low (0.1 mm yr− 1) between ca. 5600 and ca. 3000 BP when sedges dominated the peatland. In the last 2500 yrs surface moisture fluctuated with wet events at ca. 2750–2400, and 2000 BP, and dry events at ca. 2250–2100 and 1450 BP. After 1450 BP a trend towards wetter conditions culminated at ca. 500 cal BP, possibly caused by local deforestation. Over the mire history, pH (inferred from testate amoebae) was mostly low (around 5) with two short-lived shifts to alkaline conditions (7.5) at ca. 6100 and 1450 BP indicating a minerotrophic influence from surface run-off into the mire. Up to about 1000 BP the ecological shifts inferred from the three proxies agree with palaeoclimatic records from Poland and Western Europe. After this date, however correlation is less clear suggesting an increasing local anthropogenic impact on the mire. This study confirms that kettle-hole peatlands can yield useful palaeoenvironmental data as well as recording land-use change and calls for more comparable studies in regions are the interface between major climate influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号