首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular genetic evidence indicates that there should be three different (Na+ + K+)-stimulated ATPase (Na,K-ATPase) alpha subunit isozymes in the brain where previously only two ("alpha" and "alpha(+)") were resolved as proteins. To detect and identify alpha 1, alpha 2, and alpha 3 isozymes, polypeptides made by cell-free translation (Schneider, J.W., Mercer, R.W., Gilmore-Hebert, M., Utset, M.F., Lai, C., Greene, A., and Benz, E.J., Jr. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 284-288) were analyzed by gel electrophoresis and proteolytic fingerprinting. Synthetic alpha 1 comigrated with tissue alpha 1, while alpha 2 and alpha 3 comigrated with the leading and trailing edges, respectively, of tissue "alpha(+)." Proteolytic fingerprints of newborn rat brain Na,K-ATPase labeled in vivo with L-[35S]methionine indicated the presence of alpha 1 and alpha 3, and a low level of alpha 2. Monoclonal antibodies were characterized by the electrophoretic mobility of their antigens and by their ability to recognize the Na,K-ATPases of kidney, brain, and skeletal muscle. The antibodies were used to assess isozyme expression in the brain. All three isozymes increased in abundance during development from the 18-day fetus to the adult. Small changes were seen in the relative level of expression of alpha 1 and alpha 3 at different developmental ages, while alpha 2 expression increased markedly between the neonate and adult. In adult brain, all three isozymes were found in all brain regions examined. We conclude that all three isozymes are expressed as proteins and that their expression and distribution must be under complex control. No single developmental age or macroscopic brain region provides an exclusive source of any of the isozymes.  相似文献   

2.
Inclusion of sodium tetradecyl sulfate in the Laemmli polyacrylamide gel electrophoresis system produces resolution of the kidney Na,K-ATPase catalytic subunit into a doublet and sharpens demarcation of catalytic subunit isoforms in NA,K-ATPase from brain.  相似文献   

3.
Two molecular forms of the catalytic subunit of the Na,K-ATPase can be isolated from brain (1). Only the α form was detected in rat embryo brain at 13 days of gestation (E13). The α(+) form, which is characteristic of myelinated axons, appeared at E15 before myelination begins. Hence its expression is not dependent on prior myelination. Axonal transport of the α(+) form was demonstrated in 4 day-old rats. The ratio of α(+):α was 1:1 in adult retina, cortex and cerebellum and 10:1 in brain stem. Although α(+) is characteristic of myelinated axons, this regional difference was present not only in enzyme extracted from crude microsomes, that contain myelinated axon fragments, but also in enzyme from isolated synaptosomes. Hence, the α(+):α ratio is an inherent characteristic of the neuron and does not depend on regional differences in myelination.  相似文献   

4.
The expression pattern of the multiple isoforms of Na,K-ATPase was examined in the human heart. Isoform specific oligonucleotide probes for the alpha 1, alpha 2, alpha 3 and beta 1 subunits were used to probe Northern blots. The adult human ventricle expresses mRNAs for all three alpha subunit isoforms in addition to beta 1 subunit mRNA.  相似文献   

5.
A polyclonal antibody to the catalytic subunit of rat kidney Na,K-ATPase has been raised in rabbits and used to analyze the turnover of the subunit in the rat hepatoma cell line HTC. It had been shown previously (Baumann, H., and Doyle, D. (1978) J. Biol. Chem. 253, 4408-4418) that the membrane proteins of these cells displayed multicomponent turnover kinetics, the minority of the surface proteins turning over with a half-time of about 20 h and the remainder with a half-time of about 100 h. That the antibody precipitated both the alpha (catalytic) and beta (glycosylated) subunits of the Na,K-ATPase from Triton extracts of HTC cells could be demonstrated following metabolic labeling of the cells with either [3H]leucine or a mixture of [3H] mannose and [3H]fucose, but following labeling with [35S]methionine radioactivity was found only in the alpha subunit of the precipitates. Incorporation of [35S]methionine into the alpha subunit could be detected 2 min after addition of the isotope to the cell suspension. Then and at all times thereafter the label was recoverable only from the particulate fraction of a 150,000 X g 60-min centrifugation; no labeled alpha subunit was ever detected in the supernatant fraction. By quantitative densitometry of radioautographs of sodium dodecyl sulfate-polyacrylamide gels of labeled antibody precipitates, it could be shown in pulse-chase experiments that the specific activity of the alpha subunit remained unchanged for 3-4 h (transit time) after the pulse was initiated and that the activity subsequently decayed exponentially with a half-time of 18 h. In a population growing with a generation time (tG) of 33 h, this decay corresponds to a turnover rate constant of 0.49/tG. The catalytic subunit is among those membrane proteins with a rapid turnover rate.  相似文献   

6.
7.
8.
Characterization of two genes for the human Na,K-ATPase beta subunit   总被引:7,自引:0,他引:7  
  相似文献   

9.
Summary

The expression of Na,K-ATPase isoforms was investigated in human skeletal muscle membranes isolated by subcellular fractionation. The α1, α2, α3 and β1 subunits were detectable in membranes prepared from the human soleus muscle. The α1 subunit was largely detected in a fraction enriched with plasma membranes (PM), its abundance in an Intracellular membrane fraction (IM) accounted for only 4% of that in the PM fraction. No α1 subunits were detected in membranes of sarcoplasmic reticulum (SR) origin. The PM and IM fractions were enriched with α2 subunits which were less abundant in the SR-enriched fraction. The abundance of α2 molecules within the IM fraction was about 75% of that in the PM fraction when the total protein content for the two fractions was taken into account. Immuno-cytochemical studies confirmed the localization of the α1 subunit to the muscle cell surface. The α2 subunit was also found to be present in the cell surface but the observation that α2 immuno-fluorescence was diffusely dispersed throughout the muscle fibre indicated that it was also present intracellularly, consistent with its biochemical localization in the PM and IM membrane fractions. The α3 subunit was detected largely in the PM fraction but the lack of good antibodies to this isoform precluded an analysis of its immunocytochemical localization. The β1 subunit was enriched in the PM fraction but was also detected to a modest extent in the IM. A polyclonal anti-β2 antibody, which reacted positively with both human brain microsomes and rat skeletal muscle membranes, revealed that human skeletal muscles contained no immunoreactive β2 subunits. Our results indicate that the human soleus expresses the α1 and α2 (and possibly the α3) subunits of the Na,K-ATPase and that the activity of these isoforms must be supported by the β1 subunit in this muscle.  相似文献   

10.
We have characterized cDNAs coding for three Na,K-ATPase alpha subunit isoforms from the rat, a species resistant to ouabain. Northern blot and S1-nuclease mapping analyses revealed that these alpha subunit mRNAs are expressed in a tissue-specific and developmentally regulated fashion. The mRNA for the alpha 1 isoform, approximately equal to 4.5 kb long, is expressed in all fetal and adult rat tissues examined. The alpha 2 mRNA, also approximately equal to 4.5 kb long, is expressed predominantly in brain and fetal heart. The alpha 3 cDNA detected two mRNA species: a approximately equal to 4.5 kb mRNA present in most tissues and a approximately equal to 6 kb mRNA, found only in fetal brain, adult brain, heart, and skeletal muscle. The deduced amino acid sequences of these isoforms are highly conserved. However, significant differences in codon usage and patterns of genomic DNA hybridization indicate that the alpha subunits are encoded by a multigene family. Structural analysis of the alpha subunits from rat and other species predicts a polytopic protein with seven membrane-spanning regions. Isoform diversity of the alpha subunit may provide a biochemical basis for Na,K-ATPase functional diversity.  相似文献   

11.
We have analyzed the expression of Na,K-ATPase alpha subunit isoforms in the transporting ciliary processes of the human eye and in cultured cells derived from non-pigmented (NPE) and pigmented (PE) ciliary epithelium. Northern hybridization analysis shows that the mRNAs encoding all the three distinct forms of Na,K-ATPase alpha subunit [alpha 1, alpha 2, and alpha 3] are expressed in the human ciliary processes in vivo. Immunohistochemical analysis using antibodies specific for each of the three alpha subunit isoforms confirms that these polypeptides are present in the microsomal fraction from the human ciliary processes. The monoclonal antibody McB2, which is specific to the Na,K-ATPase alpha 2 subunit isoform, has been found to decorate specifically the basolateral membrane domains of NPE cells but not of the PE cells, suggesting its expression in vivo only in the ocular NPE ciliary epithelium. However, cultured cells derived from the NPE and PE layers exhibit a different pattern of expression of mRNA and protein for the Na,K-ATPase alpha subunit isoforms when compared to the tissue. Both the NPE and PE cells express alpha 1 and alpha 3 mRNA and polypeptide, whereas alpha 2 mRNA and polypeptide are undetectable in these cells. The established cell lines derived from the NPE layer express comparable levels of the alpha 1 and alpha 3 isoforms of Na,K-ATPase as detected in the primary culture. However, the established NPE cell lines are also distinguishable from the normal PE cells when analyzed by Western blot analysis with A x 2 antibodies. The results presented here clearly show that the NPE and PE cells in the ciliary body have a distinct expression of Na,K-ATPase alpha subunit isoforms as compared to cultured cells.  相似文献   

12.
Three isoforms of the alpha subunit of Na,K-ATPase, alpha 1, alpha 2, and alpha 3 have been characterized at the DNA, mRNA and protein levels. In admixtures, isoforms migrate as doublets (i.e. alpha 1 and another band originally designated alpha +, comprising alpha 2 + alpha 3) when analyzed by SDS-PAGE. As deduced from cDNA sequences their masses range from 111.7 to 112.6 kDa. With conventional protein standards, however, SDS-PAGE yields nominal masses of 85-105 kDa. In this system, the presence of a doublet that reacted with a polyclonal anti-Na,K-ATPase antibody in the kidney was interpreted as indicating two molecular or conformational species of the kidney alpha sub-unit (Siegel, G.J. and Desmond, T.J. (1989) J. Biol. Chem. 264, 4751-4754). We report that Na,K-ATPase purified from dog, guinea pig and rat kidney medulla or from rat brain, can yield two distinct bands when analyzed by SDS-PAGE or STS-PAGE, migrating between 85 and 105 kDa. An additional band migrating at 117 and 120 kDa appears often in enzyme purified from rat and guinea pig kidney medulla. The apparent molecular weights and relative intensities of these bands vary with temperature and duration of incubation during sample preparation. N-terminal sequencing and monospecific antibody probes revealed that the two distinct bands obtained from the kidney enzyme consist only of the alpha 1 isoform. The band appearing at 117-120 kDa also contains only the alpha 1 N-terminal sequence. In contrast, as reported earlier (Sweadner, K.J. (1979) J. Biol. Chem. 254, 6060-6067), the doublet seen in brain preparations consists of alpha 1 and alpha 2 or (alpha 2 + alpha 3). We conclude that monospecific antibody probes or N-terminal sequencing must be used to identify Na,K-ATPase isoforms by SDS- or STS-PAGE. In addition, gel conditions that may affect the mobilities of the isoforms are discussed.  相似文献   

13.
An isozyme-specific domain of the catalytic subunit of the Na,K-ATPase has been identified using a monoclonal antibody, McK1. The antibody's specificity was confirmed by its ability to stain proteolytic fingerprints of the Na,K-ATPase. The antibody recognized the alpha I isozyme of the rat Na,K-ATPase, but not the alpha II or alpha III isozymes. It recognized native and sodium dodecyl sulfate-denatured Na,K-ATPase and specifically stained basolateral membranes of the renal tubule. It bound to rat alpha I with highest affinity, but also cross-reacted with mouse, monkey, and human alpha I. It did not cross-react with sheep, pig, chicken, Torpedo, or dog alpha I. Fine specificity mapping was used to deduce the most likely antibody binding sites, based on comparison of eight amino acid sequences from cDNA clones. Two potential binding sites were found at widely separated locations. Limited tryptic digestion of the native enzyme was then used to demonstrate that the binding site was close to the N-terminal end of the Na,K-ATPase. The binding site is predicted to include the following essential amino acid sequence: Asp-Lys-Lys-Ser-Lys-Lys in rat alpha I or Asp-Lys-Lys-Gly-Lys-Lys in human alpha I. The antibody was found to bind to opened, but not to sealed right-side-out vesicles isolated from the rat renal medulla, demonstrating that the N-terminal end of the Na,K-ATPase is exposed at the interior of the cell.  相似文献   

14.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump.  相似文献   

15.
Mounting evidence suggests that the ion pump, Na,K-ATPase, can, in the presence of ouabain, act as a signal transducer. A prominent binding motif linking the Na,K-ATPase to intracellular signaling effectors has, however, not yet been identified. Here we report that the N-terminal tail of the Na,K-ATPase catalytic alpha-subunit (alphaNT-t) binds directly to the N terminus of the inositol 1,4,5-trisphosphate receptor. Three amino acid residues, LKK, conserved in most species and most alpha-isoforms, are essential for the binding to occur. In wild-type cells, low concentrations of ouabain trigger low frequency calcium oscillations that activate NF-kappaB and protect from apoptosis. All of these effects are suppressed in cells overexpressing a peptide corresponding to alphaNT-t but not in cells overexpressing a peptide corresponding to alphaNT-t deltaLKK. Thus we have identified a well conserved Na,K-ATPase motif that binds to the inositol 1,4,5-trisphosphate receptor and can trigger an anti-apoptotic calcium signal.  相似文献   

16.
We have used a gene transfer system to investigate the relationship between expression of the rat Na,K-ATPase alpha 1 subunit gene and ouabain-resistant Na,K-ATPase activity. A cDNA clone encoding the entire rat Na,K-ATPase alpha 1 subunit was inserted into the expression vector pSV2neo. This construct (pSV2 alpha 1) conferred resistance to 100 microM ouabain to ouabain-sensitive CV-1 cells. Hybridization analysis of transfected clones revealed the presence of both rat-specific and endogenous Na,K-ATPase alpha 1 subunit DNA and mRNA sequences. A single form of highly ouabain-sensitive 86Rb+ uptake was detected in CV-1 cells, whereas two distinct classes of ouabain-inhibitable uptake were observed in transfectants. One class exhibited the high ouabain sensitivity of the endogenous monkey Na,K-ATPase, while the second class showed the reduced ouabain sensitivity characteristic of the rodent renal Na,K-ATPase. Examination of the ouabain-sensitive, sodium-dependent ATPase activity of the transfectants also revealed a low affinity component of Na,K-ATPase activity characteristic of the rodent kidney enzyme. These results suggest that expression of the rat alpha 1 subunit gene is directly responsible for ouabain-resistant Na,K-ATPase activity in transfected CV-1 cells.  相似文献   

17.
18.
The gamma modulator (FXYD 2) is a member of the FXYD family of single transmembrane proteins that modulate the kinetic behavior of Na,K-ATPase. This study concerns the identification of regions in the alpha subunit that are important for its functional interaction with gamma. An important effect of gamma is to increase K+ antagonism of cytoplasmic Na+ activation apparent as an increase in KNa' at high [K+]. We show that although gamma associates with alpha1, alpha2, and alpha3 isoforms, it increases the KNa' of alpha1 and alpha3 but not alpha2. Accordingly, chimeras of alpha1 and alpha2 were used to identify regions of alpha critical for the increased KNa'. As with alpha1 and alpha2, all chimeras associate with gamma. Kinetic analysis of alpha2front/alpha1back chimeras indicate that the C-terminal (Lys907-Tyr1018) region of alpha1, which includes transmembrane (TM)9 close to gamma, is important for the increase in KNa'. However, similar experiments with alpha1front/alpha2back chimeras indicate a modulatory role of the loop between TMs 7 and 8. Thus, as long as the alpha1 L7/8 loop is present, replacement of TM9 of alpha1 with that of alpha2 does not abrogate the gamma effect on KNa'. In contrast, as long as TM9 is that of alpha1, replacement of L7/8 of alpha1 with that of alpha2 does not abolish the effect. It is suggested that structural association of the TM regions of alpha and FXYD 2 is not the sole determinant of this effect of FXYD on KNa' but is subject to long range modulation by the extramembranous L7/8 loop of alpha.  相似文献   

19.
20.
Distinct regulatory effects of the Na,K-ATPase gamma subunit   总被引:1,自引:0,他引:1  
The two variants of the gamma subunit of the rat renal sodium pump, gamma(a) and gamma(b), have similar effects on the Na,K-ATPase. Both increase the affinity for ATP due to a shift in the enzyme's E(1) <--> E(2) conformational equilibrium toward E(1). In addition, both increase K(+) antagonism of cytoplasmic Na(+) activation. To gain insight into the structural basis for these distinct effects, extramembranous N-terminal and C-terminal mutants of gamma were expressed in rat alpha1-transfected HeLa cells. At the N terminus, the variant-distinct region was deleted (gammaNDelta7) or replaced by alanine residues (gammaN7A). At the C terminus, four (gamma(a)CDelta4) or ten (gamma(a)CDelta10) residues were deleted. None of these mutations abrogates the K(+)/Na(+) antagonism as evidenced in a similar increase in K'(Na) seen at high (100 mm) K(+) concentration. In contrast, the C-terminal as well as N-terminal deletions (gammaNDelta7, gamma(a)CDelta4, and gamma(a)CDelta10) abolished the decrease in K'(ATP) seen with wild-type gamma(a) or gamma(b). It is concluded that different regions of the gamma chain mediate the distinct functional effects of gamma, and the effects can be long-range. In the transmembrane region, the impact of G41R replacement was analyzed since this mutation is associated with autosomal dominant renal Mg(2+)-wasting in man (Meij, I. C., Koenderink, J. B., van Bokhoven, H., Assink, K. F. H., Groenestege, W. T., de Pont, J. J. H. H. M., Bindels, R. J. M., Monnens, L. A. H., Van den Heuvel, L. P. W. J., and Knoers, N. V. A. M. (2000) Nat. Genet. 26, 265-266). The results show that Gly-41 --> Arg prevents trafficking of gamma but not alphabeta pumps to the cell surface and abrogates functional effects of gamma on alphabeta pumps. These findings underscore a potentially important role of gamma in affecting solute transport, in this instance Mg(2+) reabsorption, consequent to its primary effect on the sodium pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号